A Deep Dive Into Large Language Models

DOWNLOAD
Download A Deep Dive Into Large Language Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Deep Dive Into Large Language Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Large Language Models A Deep Dive
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer Nature
Release Date : 2024-08-20
Large Language Models A Deep Dive written by Uday Kamath and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-20 with Computers categories.
Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs—their intricate architecture, underlying algorithms, and ethical considerations—require thorough exploration, creating a need for a comprehensive book on this subject. This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios. Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models. This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs. Key Features: Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learning Over 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applications Over 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deployment Over 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycle Nine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical concepts Over 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently
A Deep Dive Into Large Language Models Exploring The Power Of Bloom Vicuna Palm Cohere Falcon 40b And Beyond
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Anand Vemula
Release Date :
A Deep Dive Into Large Language Models Exploring The Power Of Bloom Vicuna Palm Cohere Falcon 40b And Beyond written by Anand Vemula and has been published by Anand Vemula this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
A Deep Dive into Large Language Models: Unveiling the Power of AI's New Storytellers Unleashing the Power of Language: A New Era of AI Large language models (LLMs) are revolutionizing the way we interact with machines. These AI marvels, trained on massive amounts of text data, can not only understand human language but also generate creative text formats, translate languages, write different kinds of creative content, and answer your questions in an informative way. This book delves into the fascinating world of LLMs, exploring their inner workings, potential applications, and the exciting future they hold. Part I: Demystifying the LLM Landscape We begin by unveiling the core concepts of LLMs. You'll discover how they learn through massive datasets and pre-training, and how the powerful transformer architecture allows them to analyze the nuances of language. We'll also explore the benefits and limitations of LLMs, discussing their potential to automate tasks, enhance creativity, and break down language barriers, while acknowledging concerns about bias and ethical considerations. Part II: Unveiling the Champions: A Look at Pioneering LLM Technologies Get ready to meet the champions of the LLM world! We'll take a deep dive into specific technologies like Bloom (Google AI) with its massive parameter count, Vicuna (Meta AI) excelling in multilingual capabilities, and PaLM (Google AI) boasting a unique pathway system that leverages information beyond just text. We'll also explore Cohere's focus on interpretability and Falcon 40B's (Tsinghua University) strength in factual language understanding. Part III: Charting the Course: The Future of LLMs and Their Impact The journey doesn't end there. We'll explore emerging trends shaping the future of LLMs, like the focus on interpretability, the exciting possibilities of multimodal learning, and the drive for smaller, more efficient models. We'll also delve into the ethical considerations surrounding bias, transparency, and responsible AI practices that are crucial for harnessing the potential of LLMs for good. Finally, we'll examine the profound impact LLMs could have on society, from enhancing automation and personalized experiences to fostering communication and new forms of creativity. This book is your guide to understanding large language models, their capabilities, and the transformative potential they hold for the future. As we move forward, this exploration equips you to be an informed participant in the exciting world of AI language technologies.
A Deep Dive Into Large Language Models Exploring The Power Of Bloom Vicuna Palm Cohere Falcon 40b And Beyond
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Anand Vemula
Release Date :
A Deep Dive Into Large Language Models Exploring The Power Of Bloom Vicuna Palm Cohere Falcon 40b And Beyond written by Anand Vemula and has been published by Anand Vemula this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
A Deep Dive into Large Language Models: Unveiling the Power of AI's New Storytellers Unleashing the Power of Language: A New Era of AI Large language models (LLMs) are revolutionizing the way we interact with machines. These AI marvels, trained on massive amounts of text data, can not only understand human language but also generate creative text formats, translate languages, write different kinds of creative content, and answer your questions in an informative way. This book delves into the fascinating world of LLMs, exploring their inner workings, potential applications, and the exciting future they hold. Part I: Demystifying the LLM Landscape We begin by unveiling the core concepts of LLMs. You'll discover how they learn through massive datasets and pre-training, and how the powerful transformer architecture allows them to analyze the nuances of language. We'll also explore the benefits and limitations of LLMs, discussing their potential to automate tasks, enhance creativity, and break down language barriers, while acknowledging concerns about bias and ethical considerations. Part II: Unveiling the Champions: A Look at Pioneering LLM Technologies Get ready to meet the champions of the LLM world! We'll take a deep dive into specific technologies like Bloom (Google AI) with its massive parameter count, Vicuna (Meta AI) excelling in multilingual capabilities, and PaLM (Google AI) boasting a unique pathway system that leverages information beyond just text. We'll also explore Cohere's focus on interpretability and Falcon 40B's (Tsinghua University) strength in factual language understanding. Part III: Charting the Course: The Future of LLMs and Their Impact The journey doesn't end there. We'll explore emerging trends shaping the future of LLMs, like the focus on interpretability, the exciting possibilities of multimodal learning, and the drive for smaller, more efficient models. We'll also delve into the ethical considerations surrounding bias, transparency, and responsible AI practices that are crucial for harnessing the potential of LLMs for good. Finally, we'll examine the profound impact LLMs could have on society, from enhancing automation and personalized experiences to fostering communication and new forms of creativity. This book is your guide to understanding large language models, their capabilities, and the transformative potential they hold for the future. As we move forward, this exploration equips you to be an informed participant in the exciting world of AI language technologies.
Llms In Production
DOWNLOAD
Author : Christopher Brousseau
language : en
Publisher: Simon and Schuster
Release Date : 2025-02-11
Llms In Production written by Christopher Brousseau and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-11 with Computers categories.
Learn how to put Large Language Model-based applications into production safely and efficiently. This practical book offers clear, example-rich explanations of how LLMs work, how you can interact with them, and how to integrate LLMs into your own applications. Find out what makes LLMs so different from traditional software and ML, discover best practices for working with them out of the lab, and dodge common pitfalls with experienced advice. In LLMs in Production you will: • Grasp the fundamentals of LLMs and the technology behind them • Evaluate when to use a premade LLM and when to build your own • Efficiently scale up an ML platform to handle the needs of LLMs • Train LLM foundation models and finetune an existing LLM • Deploy LLMs to the cloud and edge devices using complex architectures like PEFT and LoRA • Build applications leveraging the strengths of LLMs while mitigating their weaknesses LLMs in Production delivers vital insights into delivering MLOps so you can easily and seamlessly guide one to production usage. Inside, you’ll find practical insights into everything from acquiring an LLM-suitable training dataset, building a platform, and compensating for their immense size. Plus, tips and tricks for prompt engineering, retraining and load testing, handling costs, and ensuring security. Foreword by Joe Reis. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Most business software is developed and improved iteratively, and can change significantly even after deployment. By contrast, because LLMs are expensive to create and difficult to modify, they require meticulous upfront planning, exacting data standards, and carefully-executed technical implementation. Integrating LLMs into production products impacts every aspect of your operations plan, including the application lifecycle, data pipeline, compute cost, security, and more. Get it wrong, and you may have a costly failure on your hands. About the book LLMs in Production teaches you how to develop an LLMOps plan that can take an AI app smoothly from design to delivery. You’ll learn techniques for preparing an LLM dataset, cost-efficient training hacks like LORA and RLHF, and industry benchmarks for model evaluation. Along the way, you’ll put your new skills to use in three exciting example projects: creating and training a custom LLM, building a VSCode AI coding extension, and deploying a small model to a Raspberry Pi. What's inside • Balancing cost and performance • Retraining and load testing • Optimizing models for commodity hardware • Deploying on a Kubernetes cluster About the reader For data scientists and ML engineers who know Python and the basics of cloud deployment. About the author Christopher Brousseau and Matt Sharp are experienced engineers who have led numerous successful large scale LLM deployments. Table of Contents 1 Words’ awakening: Why large language models have captured attention 2 Large language models: A deep dive into language modeling 3 Large language model operations: Building a platform for LLMs 4 Data engineering for large language models: Setting up for success 5 Training large language models: How to generate the generator 6 Large language model services: A practical guide 7 Prompt engineering: Becoming an LLM whisperer 8 Large language model applications: Building an interactive experience 9 Creating an LLM project: Reimplementing Llama 3 10 Creating a coding copilot project: This would have helped you earlier 11 Deploying an LLM on a Raspberry Pi: How low can you go? 12 Production, an ever-changing landscape: Things are just getting started A History of linguistics B Reinforcement learning with human feedback C Multimodal latent spaces
Large Language Models Via Rust
DOWNLOAD
Author : Jaisy Malikulmulki Arasy
language : en
Publisher: RantAI
Release Date : 2025-01-07
Large Language Models Via Rust written by Jaisy Malikulmulki Arasy and has been published by RantAI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-07 with Computers categories.
"LMVR - Large Language Models via Rust" is a pioneering open-source project that bridges the power of foundational models with the robustness of the Rust programming language. It highlights Rust's strengths in performance, safety, and concurrency while advancing the state-of-the-art in AI. Tailored for students, researchers, and professionals, LMVR delivers a comprehensive guide to building scalable, efficient, and secure large language models. By leveraging Rust, this book ensures that cutting-edge research and practical solutions go hand-in-hand. Readers will gain in-depth knowledge of model architectures, training methodologies, and real-world deployments, all while mastering Rust's unique capabilities for AI development.
Mastering Large Language Models With Python Unleash The Power Of Advanced Natural Language Processing For Enterprise Innovation And Efficiency Using Large Language Models Llms With Python
DOWNLOAD
Author : Raj Arun
language : en
Publisher: Orange Education Pvt Limited
Release Date : 2024-04-12
Mastering Large Language Models With Python Unleash The Power Of Advanced Natural Language Processing For Enterprise Innovation And Efficiency Using Large Language Models Llms With Python written by Raj Arun and has been published by Orange Education Pvt Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-12 with Computers categories.
A Comprehensive Guide to Leverage Generative AI in the Modern Enterprise Key Features● Gain a comprehensive understanding of LLMs within the framework of Generative AI, from foundational concepts to advanced applications. ● Dive into practical exercises and real-world applications, accompanied by detailed code walkthroughs in Python. ● Explore LLMOps with a dedicated focus on ensuring trustworthy AI and best practices for deploying, managing, and maintaining LLMs in enterprise settings. Book Description “Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence. What you will learn ● In-depth study of LLM architecture and its versatile applications across industries. ● Harness open-source and proprietary LLMs to craft innovative solutions. ● Implement LLM APIs for a wide range of tasks spanning natural language processing, audio analysis, and visual recognition. ● Optimize LLM deployment through techniques such as quantization and operational strategies like LLMOps, ensuring efficient and scalable model usage. Table of Contents 1. The Basics of Large Language Models and Their Applications 2. Demystifying Open-Source Large Language Models 3. Closed-Source Large Language Models 4. LLM APIs for Various Large Language Model Tasks 5. Integrating Cohere API in Google Sheets 6. Dynamic Movie Recommendation Engine Using LLMs 7. Document-and Web-based QA Bots with Large Language Models 8. LLM Quantization Techniques and Implementation 9. Fine-tuning and Evaluation of LLMs 10. Recipes for Fine-Tuning and Evaluating LLMs 11. LLMOps - Operationalizing LLMs at Scale 12. Implementing LLMOps in Practice Using MLflow on Databricks 13. Mastering the Art of Prompt Engineering 14. Prompt Engineering Essentials and Design Patterns 15. Ethical Considerations and Regulatory Frameworks for LLMs 16. Towards Trustworthy Generative AI (A Novel Framework Inspired by Symbolic Reasoning) Index
Demystifying Large Language Models
DOWNLOAD
Author : James Chen
language : en
Publisher: James Chen
Release Date : 2024-04-25
Demystifying Large Language Models written by James Chen and has been published by James Chen this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-25 with Computers categories.
This book is a comprehensive guide aiming to demystify the world of transformers -- the architecture that powers Large Language Models (LLMs) like GPT and BERT. From PyTorch basics and mathematical foundations to implementing a Transformer from scratch, you'll gain a deep understanding of the inner workings of these models. That's just the beginning. Get ready to dive into the realm of pre-training your own Transformer from scratch, unlocking the power of transfer learning to fine-tune LLMs for your specific use cases, exploring advanced techniques like PEFT (Prompting for Efficient Fine-Tuning) and LoRA (Low-Rank Adaptation) for fine-tuning, as well as RLHF (Reinforcement Learning with Human Feedback) for detoxifying LLMs to make them aligned with human values and ethical norms. Step into the deployment of LLMs, delivering these state-of-the-art language models into the real-world, whether integrating them into cloud platforms or optimizing them for edge devices, this section ensures you're equipped with the know-how to bring your AI solutions to life. Whether you're a seasoned AI practitioner, a data scientist, or a curious developer eager to advance your knowledge on the powerful LLMs, this book is your ultimate guide to mastering these cutting-edge models. By translating convoluted concepts into understandable explanations and offering a practical hands-on approach, this treasure trove of knowledge is invaluable to both aspiring beginners and seasoned professionals. Table of Contents 1. INTRODUCTION 1.1 What is AI, ML, DL, Generative AI and Large Language Model 1.2 Lifecycle of Large Language Models 1.3 Whom This Book Is For 1.4 How This Book Is Organized 1.5 Source Code and Resources 2. PYTORCH BASICS AND MATH FUNDAMENTALS 2.1 Tensor and Vector 2.2 Tensor and Matrix 2.3 Dot Product 2.4 Softmax 2.5 Cross Entropy 2.6 GPU Support 2.7 Linear Transformation 2.8 Embedding 2.9 Neural Network 2.10 Bigram and N-gram Models 2.11 Greedy, Random Sampling and Beam 2.12 Rank of Matrices 2.13 Singular Value Decomposition (SVD) 2.14 Conclusion 3. TRANSFORMER 3.1 Dataset and Tokenization 3.2 Embedding 3.3 Positional Encoding 3.4 Layer Normalization 3.5 Feed Forward 3.6 Scaled Dot-Product Attention 3.7 Mask 3.8 Multi-Head Attention 3.9 Encoder Layer and Encoder 3.10 Decoder Layer and Decoder 3.11 Transformer 3.12 Training 3.13 Inference 3.14 Conclusion 4. PRE-TRAINING 4.1 Machine Translation 4.2 Dataset and Tokenization 4.3 Load Data in Batch 4.4 Pre-Training nn.Transformer Model 4.5 Inference 4.6 Popular Large Language Models 4.7 Computational Resources 4.8 Prompt Engineering and In-context Learning (ICL) 4.9 Prompt Engineering on FLAN-T5 4.10 Pipelines 4.11 Conclusion 5. FINE-TUNING 5.1 Fine-Tuning 5.2 Parameter Efficient Fine-tuning (PEFT) 5.3 Low-Rank Adaptation (LoRA) 5.4 Adapter 5.5 Prompt Tuning 5.6 Evaluation 5.7 Reinforcement Learning 5.8 Reinforcement Learning Human Feedback (RLHF) 5.9 Implementation of RLHF 5.10 Conclusion 6. DEPLOYMENT OF LLMS 6.1 Challenges and Considerations 6.2 Pre-Deployment Optimization 6.3 Security and Privacy 6.4 Deployment Architectures 6.5 Scalability and Load Balancing 6.6 Compliance and Ethics Review 6.7 Model Versioning and Updates 6.8 LLM-Powered Applications 6.9 Vector Database 6.10 LangChain 6.11 Chatbot, Example of LLM-Powered Application 6.12 WebUI, Example of LLM-Power Application 6.13 Future Trends and Challenges 6.14 Conclusion REFERENCES ABOUT THE AUTHOR
The Developer S Playbook For Large Language Model Security
DOWNLOAD
Author : Steve Wilson
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2024-09-03
The Developer S Playbook For Large Language Model Security written by Steve Wilson and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-03 with Computers categories.
Large language models (LLMs) are not just shaping the trajectory of AI, they're also unveiling a new era of security challenges. This practical book takes you straight to the heart of these threats. Author Steve Wilson, chief product officer at Exabeam, focuses exclusively on LLMs, eschewing generalized AI security to delve into the unique characteristics and vulnerabilities inherent in these models. Complete with collective wisdom gained from the creation of the OWASP Top 10 for LLMs list—a feat accomplished by more than 400 industry experts—this guide delivers real-world guidance and practical strategies to help developers and security teams grapple with the realities of LLM applications. Whether you're architecting a new application or adding AI features to an existing one, this book is your go-to resource for mastering the security landscape of the next frontier in AI. You'll learn: Why LLMs present unique security challenges How to navigate the many risk conditions associated with using LLM technology The threat landscape pertaining to LLMs and the critical trust boundaries that must be maintained How to identify the top risks and vulnerabilities associated with LLMs Methods for deploying defenses to protect against attacks on top vulnerabilities Ways to actively manage critical trust boundaries on your systems to ensure secure execution and risk minimization
Algorithms In Advanced Artificial Intelligence
DOWNLOAD
Author : R. N. V. Jagan Mohan
language : en
Publisher: CRC Press
Release Date : 2024-07-08
Algorithms In Advanced Artificial Intelligence written by R. N. V. Jagan Mohan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-08 with Computers categories.
The most common form of severe dementia, Alzheimer’s disease (AD), is a cumulative neurological disorder because of the degradation and death of nerve cells in the brain tissue, intelligence steadily declines and most of its activities are compromised in AD. Before diving into the level of AD diagnosis, it is essential to highlight the fundamental differences between conventional machine learning (ML) and deep learning (DL). This work covers a number of photo-preprocessing approaches that aid in learning because image processing is essential for the diagnosis of AD. The most crucial kind of neural network for computer vision used in medical image processing is called a Convolutional Neural Network (CNN). The proposed study will consider facial characteristics, including expressions and eye movements using the diffusion model, as part of CNN’s meticulous approach to Alzheimer’s diagnosis. Convolutional neural networks were used in an effort to sense Alzheimer’s disease in its early stages using a big collection of pictures of facial expressions.
Gpt 3
DOWNLOAD
Author : Sandra Kublik
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-02-13
Gpt 3 written by Sandra Kublik and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-13 with Computers categories.
GPT-3: The Ultimate Guide To Building NLP Products With OpenAI API is a comprehensive book on the Generative Pre-trained Transformer 3 AI language model, covering its significance, capabilities, and application in creating innovative NLP Products. Key FeaturesExploration of GPT-3: The book explores GPT-3, a powerful language model, and its capabilitiesBusiness applications: The book provides practical knowledge on using GPT-3 to create new business productsExamination of AI trends: The book examines the impact of GPT-3 on emerging creator economy and trends like no-code & AGIBook Description GPT-3 has made creating AI apps simpler than ever. This book provides a comprehensive guide on how to utilize the OpenAI API with ease. It explores imaginative methods of utilizing this tool for your specific needs and showcases successful businesses that have been established through its use. The book is divided into two sections, with the first focusing on the fundamentals of the OpenAI API. The second part examines the dynamic and thriving environment that has arisen around GPT-3. Chapter 1 sets the stage with background information and defining key terms. Chapter 2 goes in-depth into the API, breaking it down into its essential components, explaining their functions and offering best practices. Chapter 3, you will build your first app with GPT-3. Chapter 4 features interviews with the founders of successful GPT-3-based products, who share challenges and insights gained. Chapter 5 examines the perspective of enterprises on GPT-3 and its potential for adoption. The problematic consequences of widespread GPT-3 adoption, such as misapplication and bias, are addressed along with efforts to resolve these issues in Chapter 6. Finally, Chapter 7 delves into the future by exploring the most exciting trends and possibilities as GPT-3 becomes increasingly integrated into the commercial ecosystem. What you will learnLearn the essential components of the OpenAI API along with the best practicesBuild and deploy your first GPT-3 powered applicationLearn from the journeys of industry leaders, startup founders who have built and deployed GPT-3 based products at scaleLook at how enterprises view GPT-3 and its potential for adoption for scalable solutionsNavigating the Consequences of GPT-3 adoption and efforts to resolve themExplore the exciting trends and possibilities of combining models with GPT-3 with No codeWho this book is for This book caters to individuals from diverse backgrounds, not just technical experts. It should be useful to you if you are:A data expert seeking to improve your AI expertiseAn entrepreneur looking to revolutionize the AI industryA business leader seeking to enhance your AI knowledge and apply it to informed decision makingA content creator in the language domain looking to utilize GPT-3's language abilities for creative and imaginative projectsAnyone with an AI idea that was previously deemed technically unfeasible or too costly to execute