[PDF] Demystifying Large Language Models - eBooks Review

Demystifying Large Language Models


Demystifying Large Language Models
DOWNLOAD

Download Demystifying Large Language Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Demystifying Large Language Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Demystifying Large Language Models


Demystifying Large Language Models
DOWNLOAD
Author : James Chen
language : en
Publisher: James Chen
Release Date : 2024-04-25

Demystifying Large Language Models written by James Chen and has been published by James Chen this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-25 with Computers categories.


This book is a comprehensive guide aiming to demystify the world of transformers -- the architecture that powers Large Language Models (LLMs) like GPT and BERT. From PyTorch basics and mathematical foundations to implementing a Transformer from scratch, you'll gain a deep understanding of the inner workings of these models. That's just the beginning. Get ready to dive into the realm of pre-training your own Transformer from scratch, unlocking the power of transfer learning to fine-tune LLMs for your specific use cases, exploring advanced techniques like PEFT (Prompting for Efficient Fine-Tuning) and LoRA (Low-Rank Adaptation) for fine-tuning, as well as RLHF (Reinforcement Learning with Human Feedback) for detoxifying LLMs to make them aligned with human values and ethical norms. Step into the deployment of LLMs, delivering these state-of-the-art language models into the real-world, whether integrating them into cloud platforms or optimizing them for edge devices, this section ensures you're equipped with the know-how to bring your AI solutions to life. Whether you're a seasoned AI practitioner, a data scientist, or a curious developer eager to advance your knowledge on the powerful LLMs, this book is your ultimate guide to mastering these cutting-edge models. By translating convoluted concepts into understandable explanations and offering a practical hands-on approach, this treasure trove of knowledge is invaluable to both aspiring beginners and seasoned professionals. Table of Contents 1. INTRODUCTION 1.1 What is AI, ML, DL, Generative AI and Large Language Model 1.2 Lifecycle of Large Language Models 1.3 Whom This Book Is For 1.4 How This Book Is Organized 1.5 Source Code and Resources 2. PYTORCH BASICS AND MATH FUNDAMENTALS 2.1 Tensor and Vector 2.2 Tensor and Matrix 2.3 Dot Product 2.4 Softmax 2.5 Cross Entropy 2.6 GPU Support 2.7 Linear Transformation 2.8 Embedding 2.9 Neural Network 2.10 Bigram and N-gram Models 2.11 Greedy, Random Sampling and Beam 2.12 Rank of Matrices 2.13 Singular Value Decomposition (SVD) 2.14 Conclusion 3. TRANSFORMER 3.1 Dataset and Tokenization 3.2 Embedding 3.3 Positional Encoding 3.4 Layer Normalization 3.5 Feed Forward 3.6 Scaled Dot-Product Attention 3.7 Mask 3.8 Multi-Head Attention 3.9 Encoder Layer and Encoder 3.10 Decoder Layer and Decoder 3.11 Transformer 3.12 Training 3.13 Inference 3.14 Conclusion 4. PRE-TRAINING 4.1 Machine Translation 4.2 Dataset and Tokenization 4.3 Load Data in Batch 4.4 Pre-Training nn.Transformer Model 4.5 Inference 4.6 Popular Large Language Models 4.7 Computational Resources 4.8 Prompt Engineering and In-context Learning (ICL) 4.9 Prompt Engineering on FLAN-T5 4.10 Pipelines 4.11 Conclusion 5. FINE-TUNING 5.1 Fine-Tuning 5.2 Parameter Efficient Fine-tuning (PEFT) 5.3 Low-Rank Adaptation (LoRA) 5.4 Adapter 5.5 Prompt Tuning 5.6 Evaluation 5.7 Reinforcement Learning 5.8 Reinforcement Learning Human Feedback (RLHF) 5.9 Implementation of RLHF 5.10 Conclusion 6. DEPLOYMENT OF LLMS 6.1 Challenges and Considerations 6.2 Pre-Deployment Optimization 6.3 Security and Privacy 6.4 Deployment Architectures 6.5 Scalability and Load Balancing 6.6 Compliance and Ethics Review 6.7 Model Versioning and Updates 6.8 LLM-Powered Applications 6.9 Vector Database 6.10 LangChain 6.11 Chatbot, Example of LLM-Powered Application 6.12 WebUI, Example of LLM-Power Application 6.13 Future Trends and Challenges 6.14 Conclusion REFERENCES ABOUT THE AUTHOR



Breaking The Language Barrier Demystifying Language Models With Openai


Breaking The Language Barrier Demystifying Language Models With Openai
DOWNLOAD
Author : Rayan Wali
language : en
Publisher: Rayan Wali
Release Date : 2023-03-08

Breaking The Language Barrier Demystifying Language Models With Openai written by Rayan Wali and has been published by Rayan Wali this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-08 with Computers categories.


Breaking the Language Barrier: Demystifying Language Models with OpenAI is an informative guide that covers practical NLP use cases, from machine translation to vector search, in a clear and accessible manner. In addition to providing insights into the latest technology that powers ChatGPT and other OpenAI language models, including GPT-3 and DALL-E, this book also showcases how to use OpenAI on the cloud, specifically on Microsoft Azure, to create scalable and efficient solutions.



Demystifying Large Language Models A Comprehensive Guide


Demystifying Large Language Models A Comprehensive Guide
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Anand Vemula
Release Date :

Demystifying Large Language Models A Comprehensive Guide written by Anand Vemula and has been published by Anand Vemula this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Demystifying Large Language Models: A Comprehensive Guide" serves as an essential roadmap for navigating the complex terrain of cutting-edge language technologies. In this book, readers are taken on a journey into the heart of Large Language Models (LLMs), exploring their significance, mechanics, and real-world applications. The narrative begins by contextualizing LLMs within the broader landscape of artificial intelligence and natural language processing, offering a clear understanding of their evolution and the pivotal role they play in modern computational linguistics. Delving into the workings of LLMs, the book breaks down intricate concepts into digestible insights, ensuring accessibility for both technical and non-technical audiences. Readers are introduced to the underlying architectures and training methodologies that power LLMs, including Transformer models like GPT (Generative Pre-trained Transformer) series. Through illustrative examples and practical explanations, complex technical details are demystified, empowering readers to grasp the essence of how these models generate human-like text and responses. Beyond theoretical underpinnings, the book explores diverse applications of LLMs across industries and disciplines. From natural language understanding and generation to sentiment analysis and machine translation, readers gain valuable insights into how LLMs are revolutionizing tasks once deemed exclusive to human intelligence. Moreover, the book addresses critical considerations surrounding ethics, bias, and responsible deployment of LLMs in real-world scenarios. It prompts readers to reflect on the societal implications of these technologies and encourages a thoughtful approach towards their development and utilization. With its comprehensive coverage and accessible language, "Demystifying Large Language Models" equips readers with the knowledge and understanding needed to engage with LLMs confidently. Whether you're a researcher, industry professional, or curious enthusiast, this book offers invaluable insights into the present and future of language technology.



Mastering Nlp From Foundations To Llms


Mastering Nlp From Foundations To Llms
DOWNLOAD
Author : Lior Gazit
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-04-26

Mastering Nlp From Foundations To Llms written by Lior Gazit and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-26 with Computers categories.


Enhance your NLP proficiency with modern frameworks like LangChain, explore mathematical foundations and code samples, and gain expert insights into current and future trends Key Features Learn how to build Python-driven solutions with a focus on NLP, LLMs, RAGs, and GPT Master embedding techniques and machine learning principles for real-world applications Understand the mathematical foundations of NLP and deep learning designs Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDo you want to master Natural Language Processing (NLP) but don’t know where to begin? This book will give you the right head start. Written by leaders in machine learning and NLP, Mastering NLP from Foundations to LLMs provides an in-depth introduction to techniques. Starting with the mathematical foundations of machine learning (ML), you’ll gradually progress to advanced NLP applications such as large language models (LLMs) and AI applications. You’ll get to grips with linear algebra, optimization, probability, and statistics, which are essential for understanding and implementing machine learning and NLP algorithms. You’ll also explore general machine learning techniques and find out how they relate to NLP. Next, you’ll learn how to preprocess text data, explore methods for cleaning and preparing text for analysis, and understand how to do text classification. You’ll get all of this and more along with complete Python code samples. By the end of the book, the advanced topics of LLMs’ theory, design, and applications will be discussed along with the future trends in NLP, which will feature expert opinions. You’ll also get to strengthen your practical skills by working on sample real-world NLP business problems and solutions.What you will learn Master the mathematical foundations of machine learning and NLP Implement advanced techniques for preprocessing text data and analysis Design ML-NLP systems in Python Model and classify text using traditional machine learning and deep learning methods Understand the theory and design of LLMs and their implementation for various applications in AI Explore NLP insights, trends, and expert opinions on its future direction and potential Who this book is for This book is for deep learning and machine learning researchers, NLP practitioners, ML/NLP educators, and STEM students. Professionals working with text data as part of their projects will also find plenty of useful information in this book. Beginner-level familiarity with machine learning and a basic working knowledge of Python will help you get the best out of this book.



A Beginner S Guide To Large Language Models


A Beginner S Guide To Large Language Models
DOWNLOAD
Author : Enamul Haque
language : en
Publisher: Enamul Haque
Release Date : 2024-07-25

A Beginner S Guide To Large Language Models written by Enamul Haque and has been published by Enamul Haque this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-25 with Computers categories.


A Beginner's Guide to Large Language Models: Conversational AI for Non-Technical Enthusiasts Step into the revolutionary world of artificial intelligence with "A Beginner's Guide to Large Language Models: Conversational AI for Non-Technical Enthusiasts." Whether you're a curious individual or a professional seeking to leverage AI in your field, this book demystifies the complexities of large language models (LLMs) with engaging, easy-to-understand explanations and practical insights. Explore the fascinating journey of AI from its early roots to the cutting-edge advancements that power today's conversational AI systems. Discover how LLMs, like ChatGPT and Google's Gemini, are transforming industries, enhancing productivity, and sparking creativity across the globe. With the guidance of this comprehensive and accessible guide, you'll gain a solid understanding of how LLMs work, their real-world applications, and the ethical considerations they entail. Packed with vivid examples, hands-on exercises, and real-life scenarios, this book will empower you to harness the full potential of LLMs. Learn to generate creative content, translate languages in real-time, summarise complex information, and even develop AI-powered applications—all without needing a technical background. You'll also find valuable insights into the evolving job landscape, equipping you with the knowledge to pursue a successful career in this dynamic field. This guide ensures that AI is not just an abstract concept but a tangible tool you can use to transform your everyday life and work. Dive into the future with confidence and curiosity, and discover the incredible possibilities that large language models offer. Join the AI revolution and unlock the secrets of the technology that's reshaping our world. "A Beginner's Guide to Large Language Models" is your key to understanding and mastering the power of conversational AI. Introduction This introduction sets the stage for understanding the evolution of artificial intelligence (AI) and large language models (LLMs). It highlights the promise of making complex AI concepts accessible to non-technical readers and outlines the unique approach of this book. Chapter 1: Demystifying AI and LLMs: A Journey Through Time This chapter introduces the basics of AI, using simple analogies and real-world examples. It traces the evolution of AI, from rule-based systems to machine learning and deep learning, leading to the emergence of LLMs. Key concepts such as tokens, vocabulary, and embeddings are explained to build a solid foundation for understanding how LLMs process and generate language. Chapter 2: Mastering Large Language Models Delving deeper into the mechanics of LLMs, this chapter covers the transformer architecture, attention mechanisms, and the processes involved in training and fine-tuning LLMs. It includes hands-on exercises with prompts and discusses advanced techniques like chain-of-thought prompting and prompt chaining to optimise LLM performance. Chapter 3: The LLM Toolbox: Unleashing the Power of Language AI This chapter explores the diverse applications of LLMs in text generation, language translation, summarisation, question answering, and code generation. It also introduces multimodal LLMs that handle both text and images, showcasing their impact on various creative and professional fields. Practical examples and real-life scenarios illustrate how these tools can enhance productivity and creativity. Chapter 4: LLMs in the Real World: Transforming Industries Highlighting the transformative impact of LLMs across different industries, this chapter covers their role in healthcare, finance, education, creative industries, and business. It discusses how LLMs are revolutionising tasks such as medical diagnosis, fraud detection, personalised tutoring, and content creation, and explores the future of work in an AI-powered world. Chapter 5: The Dark Side of LLMs: Ethical Concerns and Challenges Addressing the ethical challenges of LLMs, this chapter covers bias and fairness, privacy concerns, misuse of LLMs, security threats, and the transparency of AI decision-making. It also discusses ethical frameworks for responsible AI development and presents diverse perspectives on the risks and benefits of LLMs. Chapter 6: Mastering LLMs: Advanced Techniques and Strategies This chapter focuses on advanced techniques for leveraging LLMs, such as combining transformers with other AI models, fine-tuning open-source LLMs for specific tasks, and building LLM-powered applications. It provides detailed guidance on prompt engineering for various applications and includes a step-by-step guide to creating an AI-powered chatbot. Chapter 7: LLMs and the Future: A Glimpse into Tomorrow Looking ahead, this chapter explores emerging trends and potential breakthroughs in AI and LLM research. It discusses ethical AI development, insights from leading AI experts, and visions of a future where LLMs are integrated into everyday life. The chapter highlights the importance of building responsible AI systems that address societal concerns. Chapter 8: Your LLM Career Roadmap: Navigating the AI Job Landscape Focusing on the growing demand for LLM expertise, this chapter outlines various career paths in the AI field, such as LLM scientists, engineers, and prompt engineers. It provides resources for building the necessary skillsets and discusses the evolving job market, emphasising the importance of continuous learning and adaptability in a rapidly changing industry. Thought-Provoking Questions, Simple Exercises, and Real-Life Scenarios The book concludes with practical exercises and real-life scenarios to help readers apply their knowledge of LLMs. It includes thought-provoking questions to deepen understanding and provides resources and tools for further exploration of LLM applications. Tools to Help with Your Exercises This section lists tools and platforms for engaging with LLM exercises, such as OpenAI's Playground, Google Translate, and various IDEs for coding. Links to these tools are provided to facilitate hands-on learning and experimentation.



Llm Architectures A Comprehensive Guide Bert Bart Xlnet


Llm Architectures A Comprehensive Guide Bert Bart Xlnet
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Anand Vemula
Release Date :

Llm Architectures A Comprehensive Guide Bert Bart Xlnet written by Anand Vemula and has been published by Anand Vemula this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Demystifying the Power of Large Language Models: A Guide for Everyone Large Language Models (LLMs) are revolutionizing the way we interact with machines and information. This comprehensive guide unveils the fascinating world of LLMs, guiding you from their fundamental concepts to their cutting-edge applications. Master the Basics: Explore the foundational architectures like Recurrent Neural Networks (RNNs) and Transformers that power LLMs. Gain a clear understanding of how these models process and understand language. Deep Dives into Pioneering Architectures: Delve into the specifics of BERT, BART, and XLNet, three groundbreaking LLM architectures. Learn about their unique pre-training techniques and how they tackle various natural language processing tasks. Unveiling the Champions: A Comparative Analysis: Discover how these leading LLM architectures stack up against each other. Explore performance benchmarks and uncover the strengths and weaknesses of each model to understand which one is best suited for your specific needs. Emerging Frontiers: Charting the Course for the Future: Explore the exciting trends shaping the future of LLMs. Learn about the quest for ever-larger models, the growing focus on training efficiency, and the development of specialized architectures for tasks like question answering and dialogue systems. This book is not just about technical details. It provides real-world case studies and use cases, showcasing how LLMs are transforming various industries, from content creation and customer service to healthcare and education. With clear explanations and a conversational tone, this guide is perfect for anyone who wants to understand the power of LLMs and their potential impact on our world. Whether you're a tech enthusiast, a student, or a professional curious about the future of AI, this book is your one-stop guide to demystifying Large Language Models.



Python Deep Learning Projects


Python Deep Learning Projects
DOWNLOAD
Author : Matthew Lamons
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-31

Python Deep Learning Projects written by Matthew Lamons and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.


Insightful projects to master deep learning and neural network architectures using Python and Keras Key FeaturesExplore deep learning across computer vision, natural language processing (NLP), and image processingDiscover best practices for the training of deep neural networks and their deploymentAccess popular deep learning models as well as widely used neural network architecturesBook Description Deep learning has been gradually revolutionizing every field of artificial intelligence, making application development easier. Python Deep Learning Projects imparts all the knowledge needed to implement complex deep learning projects in the field of computational linguistics and computer vision. Each of these projects is unique, helping you progressively master the subject. You’ll learn how to implement a text classifier system using a recurrent neural network (RNN) model and optimize it to understand the shortcomings you might experience while implementing a simple deep learning system. Similarly, you’ll discover how to develop various projects, including word vector representation, open domain question answering, and building chatbots using seq-to-seq models and language modeling. In addition to this, you’ll cover advanced concepts, such as regularization, gradient clipping, gradient normalization, and bidirectional RNNs, through a series of engaging projects. By the end of this book, you will have gained knowledge to develop your own deep learning systems in a straightforward way and in an efficient way What you will learnSet up a deep learning development environment on Amazon Web Services (AWS)Apply GPU-powered instances as well as the deep learning AMIImplement seq-to-seq networks for modeling natural language processing (NLP)Develop an end-to-end speech recognition systemBuild a system for pixel-wise semantic labeling of an imageCreate a system that generates images and their regionsWho this book is for Python Deep Learning Projects is for you if you want to get insights into deep learning, data science, and artificial intelligence. This book is also for those who want to break into deep learning and develop their own AI projects. It is assumed that you have sound knowledge of Python programming



The Chatgpt Handbook A Comprehensive Guide To Using And Understanding The Ai Language Model


The Chatgpt Handbook A Comprehensive Guide To Using And Understanding The Ai Language Model
DOWNLOAD
Author : Anand Vemula
language : en
Publisher: Anand Vemula
Release Date :

The Chatgpt Handbook A Comprehensive Guide To Using And Understanding The Ai Language Model written by Anand Vemula and has been published by Anand Vemula this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


The ChatGPT Handbook: A Comprehensive Guide to Using and Understanding the AI Language Model" serves as a definitive resource for individuals seeking to navigate and harness the capabilities of ChatGPT, an advanced artificial intelligence language model. Authored by experts in the field, this comprehensive guide offers an in-depth exploration of ChatGPT's functionalities, applications, and underlying principles. The handbook begins by elucidating the foundational concepts of artificial intelligence and natural language processing, providing readers with a solid understanding of the technology powering ChatGPT. It delves into the history of language models, tracing their evolution from early iterations to the state-of-the-art algorithms employed today. Readers are then introduced to the intricacies of ChatGPT's architecture, learning about its neural network structure, training methodology, and innovative techniques such as self-attention mechanisms. The handbook elucidates how ChatGPT processes and generates human-like text, demystifying complex technical concepts through clear explanations and illustrative examples. A significant portion of the handbook is dedicated to practical guidance on utilizing ChatGPT effectively. Readers are equipped with strategies for interacting with the model, including best practices for input formatting, prompt construction, and response evaluation. Furthermore, the handbook offers insights into optimizing the performance of ChatGPT for specific tasks and domains, empowering users to tailor their interactions according to their needs. Beyond its practical applications, the handbook delves into the societal implications and ethical considerations surrounding AI language models like ChatGPT. It explores topics such as bias mitigation, responsible deployment, and the importance of transparency and accountability in AI development. In addition to its technical content, the handbook features case studies, interviews with industry experts, and real-world examples showcasing the diverse ways in which ChatGPT can be leveraged across domains such as customer service, education, and creative writing. Comprehensive yet accessible, "The ChatGPT Handbook" serves as an indispensable resource for anyone seeking to harness the power of AI language models in their personal or professional endeavors. Whether you're a seasoned developer, a curious enthusiast, or a business leader exploring AI solutions, this handbook offers valuable insights and guidance for navigating the landscape of artificial intelligence with confidence and competence.



Chatgpt Ai The Beginner S Guide


Chatgpt Ai The Beginner S Guide
DOWNLOAD
Author : StoryBuddiesPlay
language : en
Publisher: StoryBuddiesPlay
Release Date : 2024-03-23

Chatgpt Ai The Beginner S Guide written by StoryBuddiesPlay and has been published by StoryBuddiesPlay this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-23 with Computers categories.


ChatGPT Ai The Beginner's Guide Welcome to the Beginner's Guide to ChatGPT! Whether you're new to artificial intelligence or a seasoned user looking to enhance your skills, this comprehensive resource is your gateway to unlocking the full potential of ChatGPT. Dive into a world of endless possibilities as you learn how to navigate and harness the capabilities of this cutting-edge language model. From understanding its basic functionalities to exploring advanced features, this guide will equip you with the knowledge and tools needed to maximize your experience with ChatGPT. Join us on this journey as we demystify AI and empower you to communicate, create, and innovate like never before with ChatGPT



Introduction To Large Language Models For Business Leaders


Introduction To Large Language Models For Business Leaders
DOWNLOAD
Author : I. Almeida
language : en
Publisher: Now Next Later AI
Release Date : 2023-09-02

Introduction To Large Language Models For Business Leaders written by I. Almeida and has been published by Now Next Later AI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-02 with Computers categories.


Responsible AI Strategy Beyond Fear and Hype - 2025 Edition Finalist for the 2023 HARVEY CHUTE Book Awards recognizing emerging talent and outstanding works in the genre of Business and Enterprise Non-Fiction. In this comprehensive guide, business leaders will gain a nuanced understanding of large language models (LLMs) and generative AI. The book covers the rapid progress of LLMs, explains technical concepts in non-technical terms, provides business use cases, offers implementation strategies, explores impacts on the workforce, and discusses ethical considerations. Key topics include: - The Evolution of LLMs: From early statistical models to transformer architectures and foundation models. - How LLMS Understand Language: Demystifying key components like self-attention, embeddings, and deep linguistic modeling. - The Art of Inference: Exploring inference parameters for controlling and optimizing LLM outputs. - Appropriate Use Cases: A nuanced look at LLM strengths and limitations across applications like creative writing, conversational agents, search, and coding assistance. - Productivity Gains: Synthesizing the latest research on generative AI's impact on worker efficiency and satisfaction. - The Perils of Automation: Examining risks like automation blindness, deskilling, disrupted teamwork and more if LLMs are deployed without deliberate precautions. - The LLM Value Chain: Analyzing key components, players, trends and strategic considerations. - Computational Power: A deep dive into the staggering compute requirements behind state-of-the-art generative AI. - Open Source vs Big Tech: Exploring the high-stakes battle between open and proprietary approaches to AI development. - The Generative AI Project Lifecycle: A blueprint spanning use case definition, model selection, adaptation, integration and deployment. - Ethical Data Sourcing: Why the training data supply chain proves as crucial as model architecture for responsible development. - Evaluating LLMs: Surveying common benchmarks, their limitations, and holistic alternatives. - Efficient Fine-Tuning: Examining techniques like LoRA and PEFT that adapt LLMs for applications with minimal compute. - Human Feedback: How reinforcement learning incorporating human ratings and demonstrations steers models towards helpfulness. - Ensemble Models and Mixture-of-Experts: Parallels between collaborative intelligence in human teams and AI systems. - Areas of Research and Innovation: Retrieval augmentation, program-aided language models, action-based reasoning and more. - Ethical Deployment: Pragmatic steps for testing, monitoring, seeking feedback, auditing incentives and mitigating risks responsibly. The book offers an impartial narrative aimed at informing readers for thoughtful adoption, maximizing real-world benefits while proactively addressing risks. With this guide, leaders gain integrated perspectives essential to setting sound strategies amidst generative AI's rapid evolution. More Than a Book By purchasing this book, you will also be granted free access to the AI Academy platform. There you can view free course modules, test your knowledge through quizzes, attend webinars, and engage in discussion with other readers. No credit card required. AI Academy by Now Next Later AI We are the most trusted and effective learning platform dedicated to empowering leaders with the knowledge and skills needed to harness the power of AI safely and ethically.