[PDF] A Gentle Course In Local Class Field Theory - eBooks Review

A Gentle Course In Local Class Field Theory


A Gentle Course In Local Class Field Theory
DOWNLOAD

Download A Gentle Course In Local Class Field Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Gentle Course In Local Class Field Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



A Gentle Course In Local Class Field Theory


A Gentle Course In Local Class Field Theory
DOWNLOAD
Author : Pierre Guillot
language : en
Publisher: Cambridge University Press
Release Date : 2018-11

A Gentle Course In Local Class Field Theory written by Pierre Guillot and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11 with Mathematics categories.


A self-contained exposition of local class field theory for students in advanced algebra.



A Gentle Course In Local Class Field Theory


A Gentle Course In Local Class Field Theory
DOWNLOAD
Author : Pierre Guillot
language : en
Publisher: Cambridge University Press
Release Date : 2018-11-01

A Gentle Course In Local Class Field Theory written by Pierre Guillot and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-01 with Mathematics categories.


This book offers a self-contained exposition of local class field theory, serving as a second course on Galois theory. It opens with a discussion of several fundamental topics in algebra, such as profinite groups, p-adic fields, semisimple algebras and their modules, and homological algebra with the example of group cohomology. The book culminates with the description of the abelian extensions of local number fields, as well as the celebrated Kronecker–Weber theory, in both the local and global cases. The material will find use across disciplines, including number theory, representation theory, algebraic geometry, and algebraic topology. Written for beginning graduate students and advanced undergraduates, this book can be used in the classroom or for independent study.



Local Class Field Theory


Local Class Field Theory
DOWNLOAD
Author : Kenkichi Iwasawa
language : en
Publisher: Oxford University Press, USA
Release Date : 1986

Local Class Field Theory written by Kenkichi Iwasawa and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986 with History categories.


This readable introduction to local class field theory, a theory of algebraic extensions, covers such topics as abelian extensions. Almost self-contained, the book is accessible to any reader with a basic background in algebra and topological groups.



Local Fields


Local Fields
DOWNLOAD
Author : Jean-Pierre Serre
language : en
Publisher: Springer
Release Date : 1995-07-27

Local Fields written by Jean-Pierre Serre and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-07-27 with Mathematics categories.


The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray.



Modular Forms A Computational Approach


Modular Forms A Computational Approach
DOWNLOAD
Author : William A. Stein
language : en
Publisher: American Mathematical Soc.
Release Date : 2007-02-13

Modular Forms A Computational Approach written by William A. Stein and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-02-13 with Mathematics categories.


This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.



A Concise Course In Algebraic Topology


A Concise Course In Algebraic Topology
DOWNLOAD
Author : J. P. May
language : en
Publisher: University of Chicago Press
Release Date : 1999-09

A Concise Course In Algebraic Topology written by J. P. May and has been published by University of Chicago Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-09 with Mathematics categories.


Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.



Introduction To Commutative Algebra


Introduction To Commutative Algebra
DOWNLOAD
Author : Michael F. Atiyah
language : en
Publisher: CRC Press
Release Date : 2018-03-09

Introduction To Commutative Algebra written by Michael F. Atiyah and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-09 with Mathematics categories.


First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.



An Introduction To Quantum Field Theory


An Introduction To Quantum Field Theory
DOWNLOAD
Author : Michael E. Peskin
language : en
Publisher: CRC Press
Release Date : 2018-05-04

An Introduction To Quantum Field Theory written by Michael E. Peskin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-04 with Science categories.


An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.



A Brief Guide To Algebraic Number Theory


A Brief Guide To Algebraic Number Theory
DOWNLOAD
Author : H. P. F. Swinnerton-Dyer
language : en
Publisher: Cambridge University Press
Release Date : 2001-02-22

A Brief Guide To Algebraic Number Theory written by H. P. F. Swinnerton-Dyer and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-02-22 with Mathematics categories.


Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.



The Brauer Grothendieck Group


The Brauer Grothendieck Group
DOWNLOAD
Author : Jean-Louis Colliot-Thélène
language : en
Publisher: Springer Nature
Release Date : 2021-07-30

The Brauer Grothendieck Group written by Jean-Louis Colliot-Thélène and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-30 with Mathematics categories.


This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer–Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong’s proof of Gabber’s theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer–Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer–Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.