A Handbook Of Algorithms And Data Structures

DOWNLOAD
Download A Handbook Of Algorithms And Data Structures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Handbook Of Algorithms And Data Structures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Handbook Of Algorithms And Data Structures
DOWNLOAD
Author : Gaston H. Gonnet
language : en
Publisher: Addison Wesley Publishing Company
Release Date : 1984
Handbook Of Algorithms And Data Structures written by Gaston H. Gonnet and has been published by Addison Wesley Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984 with Computers categories.
Handbook Of Algorithms And Data Structures
DOWNLOAD
Author : Gaston H. Gonnet
language : en
Publisher: Addison-Wesley Longman
Release Date : 1991-01-01
Handbook Of Algorithms And Data Structures written by Gaston H. Gonnet and has been published by Addison-Wesley Longman this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-01-01 with Computers categories.
This second edition brings together many useful algorithms and their associated data structures in a single, handy reference, featuring a new section on text manipulation algorithms and expanded coverage of arithmetical algorithms. Each algorithm is coded in both C and Pascal.
An Introduction To Data Structures And Algorithms
DOWNLOAD
Author : J.A. Storer
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
An Introduction To Data Structures And Algorithms written by J.A. Storer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Data structures and algorithms are presented at the college level in a highly accessible format that presents material with one-page displays in a way that will appeal to both teachers and students. The thirteen chapters cover: Models of Computation, Lists, Induction and Recursion, Trees, Algorithm Design, Hashing, Heaps, Balanced Trees, Sets Over a Small Universe, Graphs, Strings, Discrete Fourier Transform, Parallel Computation. Key features: Complicated concepts are expressed clearly in a single page with minimal notation and without the "clutter" of the syntax of a particular programming language; algorithms are presented with self-explanatory "pseudo-code." * Chapters 1-4 focus on elementary concepts, the exposition unfolding at a slower pace. Sample exercises with solutions are provided. Sections that may be skipped for an introductory course are starred. Requires only some basic mathematics background and some computer programming experience. * Chapters 5-13 progress at a faster pace. The material is suitable for undergraduates or first-year graduates who need only review Chapters 1 -4. * This book may be used for a one-semester introductory course (based on Chapters 1-4 and portions of the chapters on algorithm design, hashing, and graph algorithms) and for a one-semester advanced course that starts at Chapter 5. A year-long course may be based on the entire book. * Sorting, often perceived as rather technical, is not treated as a separate chapter, but is used in many examples (including bubble sort, merge sort, tree sort, heap sort, quick sort, and several parallel algorithms). Also, lower bounds on sorting by comparisons are included with the presentation of heaps in the context of lower bounds for comparison-based structures. * Chapter 13 on parallel models of computation is something of a mini-book itself, and a good way to end a course. Although it is not clear what parallel
Advanced Algorithms And Data Structures
DOWNLOAD
Author : Marcello La Rocca
language : en
Publisher: Simon and Schuster
Release Date : 2021-08-10
Advanced Algorithms And Data Structures written by Marcello La Rocca and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-10 with Computers categories.
"An accessible introduction to the fundamental algorithms used to run the world." - Richard Vaughan, Purple Monkey Collective Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. Summary As a software engineer, you’ll encounter countless programming challenges that initially seem confusing, difficult, or even impossible. Don’t despair! Many of these “new” problems already have well-established solutions. Advanced Algorithms and Data Structures teaches you powerful approaches to a wide range of tricky coding challenges that you can adapt and apply to your own applications. Providing a balanced blend of classic, advanced, and new algorithms, this practical guide upgrades your programming toolbox with new perspectives and hands-on techniques. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Can you improve the speed and efficiency of your applications without investing in new hardware? Well, yes, you can: Innovations in algorithms and data structures have led to huge advances in application performance. Pick up this book to discover a collection of advanced algorithms that will make you a more effective developer. About the book Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. You’ll discover cutting-edge approaches to a variety of tricky scenarios. You’ll even learn to design your own data structures for projects that require a custom solution. What's inside Build on basic data structures you already know Profile your algorithms to speed up application Store and query strings efficiently Distribute clustering algorithms with MapReduce Solve logistics problems using graphs and optimization algorithms About the reader For intermediate programmers. About the author Marcello La Rocca is a research scientist and a full-stack engineer. His focus is on optimization algorithms, genetic algorithms, machine learning, and quantum computing. Table of Contents 1 Introducing data structures PART 1 IMPROVING OVER BASIC DATA STRUCTURES 2 Improving priority queues: d-way heaps 3 Treaps: Using randomization to balance binary search trees 4 Bloom filters: Reducing the memory for tracking content 5 Disjoint sets: Sub-linear time processing 6 Trie, radix trie: Efficient string search 7 Use case: LRU cache PART 2 MULTIDEMENSIONAL QUERIES 8 Nearest neighbors search 9 K-d trees: Multidimensional data indexing 10 Similarity Search Trees: Approximate nearest neighbors search for image retrieval 11 Applications of nearest neighbor search 12 Clustering 13 Parallel clustering: MapReduce and canopy clustering PART 3 PLANAR GRAPHS AND MINIMUM CROSSING NUMBER 14 An introduction to graphs: Finding paths of minimum distance 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections 16 Gradient descent: Optimization problems (not just) on graphs 17 Simulated annealing: Optimization beyond local minima 18 Genetic algorithms: Biologically inspired, fast-converging optimization
A Handbook Of Algorithms And Data Structures
DOWNLOAD
Author : Gaston H. Gonnet
language : en
Publisher: University of Waterloo, [Department of Computer Science]
Release Date : 1980
A Handbook Of Algorithms And Data Structures written by Gaston H. Gonnet and has been published by University of Waterloo, [Department of Computer Science] this book supported file pdf, txt, epub, kindle and other format this book has been release on 1980 with Algorithms categories.
Data Structures And Algorithms A First Course
DOWNLOAD
Author : Iain T. Adamson
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Data Structures And Algorithms A First Course written by Iain T. Adamson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
All young computer scientists who aspire to write programs must learn something about algorithms and data structures. This book does exactly that. Based on lecture courses developed by the author over a number of years the book is written in an informal and friendly way specifically to appeal to students. The book is divided into four parts: the first on Data Structures introduces a variety of structures and the fundamental operations associated with them, together with descriptions of how they are implemented in Pascal; the second discusses algorithms and the notion of complexity; Part III is concerned with the description of successively more elaborate structures for the storage of records and algorithms for retrieving a record from such a structure by means of its key; and finally, Part IV consists of very full solutions to nearly all the exercises in the book.
Sequential And Parallel Algorithms And Data Structures
DOWNLOAD
Author : Peter Sanders
language : en
Publisher: Springer Nature
Release Date : 2019-08-31
Sequential And Parallel Algorithms And Data Structures written by Peter Sanders and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-31 with Computers categories.
This textbook is a concise introduction to the basic toolbox of structures that allow efficient organization and retrieval of data, key algorithms for problems on graphs, and generic techniques for modeling, understanding, and solving algorithmic problems. The authors aim for a balance between simplicity and efficiency, between theory and practice, and between classical results and the forefront of research. Individual chapters cover arrays and linked lists, hash tables and associative arrays, sorting and selection, priority queues, sorted sequences, graph representation, graph traversal, shortest paths, minimum spanning trees, optimization, collective communication and computation, and load balancing. The authors also discuss important issues such as algorithm engineering, memory hierarchies, algorithm libraries, and certifying algorithms. Moving beyond the sequential algorithms and data structures of the earlier related title, this book takes into account the paradigm shift towards the parallel processing required to solve modern performance-critical applications and how this impacts on the teaching of algorithms. The book is suitable for undergraduate and graduate students and professionals familiar with programming and basic mathematical language. Most chapters have the same basic structure: the authors discuss a problem as it occurs in a real-life situation, they illustrate the most important applications, and then they introduce simple solutions as informally as possible and as formally as necessary so the reader really understands the issues at hand. As they move to more advanced and optional issues, their approach gradually leads to a more mathematical treatment, including theorems and proofs. The book includes many examples, pictures, informal explanations, and exercises, and the implementation notes introduce clean, efficient implementations in languages such as C++ and Java.
Algorithms And Data Structures For Massive Datasets
DOWNLOAD
Author : Dzejla Medjedovic
language : en
Publisher: Simon and Schuster
Release Date : 2022-08-16
Algorithms And Data Structures For Massive Datasets written by Dzejla Medjedovic and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-16 with Computers categories.
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Algorithms And Data Structures
DOWNLOAD
Author : Helmut Knebl
language : en
Publisher: Springer Nature
Release Date : 2020-10-31
Algorithms And Data Structures written by Helmut Knebl and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-31 with Computers categories.
This is a central topic in any computer science curriculum. To distinguish this textbook from others, the author considers probabilistic methods as being fundamental for the construction of simple and efficient algorithms, and in each chapter at least one problem is solved using a randomized algorithm. Data structures are discussed to the extent needed for the implementation of the algorithms. The specific algorithms examined were chosen because of their wide field of application. This book originates from lectures for undergraduate and graduate students. The text assumes experience in programming algorithms, especially with elementary data structures such as chained lists, queues, and stacks. It also assumes familiarity with mathematical methods, although the author summarizes some basic notations and results from probability theory and related mathematical terminology in the appendices. He includes many examples to explain the individual steps of the algorithms, and he concludes each chapter with numerous exercises.