[PDF] A Hands On Introduction To Essential Python Libraries And Frameworks With Code Samples - eBooks Review

A Hands On Introduction To Essential Python Libraries And Frameworks With Code Samples


A Hands On Introduction To Essential Python Libraries And Frameworks With Code Samples
DOWNLOAD

Download A Hands On Introduction To Essential Python Libraries And Frameworks With Code Samples PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Hands On Introduction To Essential Python Libraries And Frameworks With Code Samples book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



A Hands On Introduction To Essential Python Libraries And Frameworks With Code Samples


A Hands On Introduction To Essential Python Libraries And Frameworks With Code Samples
DOWNLOAD
Author : Murat Durmus
language : en
Publisher: Murat Durmus
Release Date : 2023-03-02

A Hands On Introduction To Essential Python Libraries And Frameworks With Code Samples written by Murat Durmus and has been published by Murat Durmus this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-02 with Computers categories.


Essential Python libraries and frameworks that every aspiring data scientist, ML engineer, and Python developer should know. "Python is not just a language, it's a community where developers can learn, collaborate and create wonders." ~ Guido van Rossum (Creator of Python)



Applied Machine Learning For Data Science Practitioners


Applied Machine Learning For Data Science Practitioners
DOWNLOAD
Author : Vidya Subramanian
language : en
Publisher: John Wiley & Sons
Release Date : 2025-04-01

Applied Machine Learning For Data Science Practitioners written by Vidya Subramanian and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-01 with Mathematics categories.


A single-volume reference on data science techniques for evaluating and solving business problems using Applied Machine Learning (ML). Applied Machine Learning for Data Science Practitioners offers a practical, step-by-step guide to building end-to-end ML solutions for real-world business challenges, empowering data science practitioners to make informed decisions and select the right techniques for any use case. Unlike many data science books that focus on popular algorithms and coding, this book takes a holistic approach. It equips you with the knowledge to evaluate a range of techniques and algorithms. The book balances theoretical concepts with practical examples to illustrate key concepts, derive insights, and demonstrate applications. In addition to code snippets and reviewing output, the book provides guidance on interpreting results. This book is an essential resource if you are looking to elevate your understanding of ML and your technical capabilities, combining theoretical and practical coding examples. A basic understanding of using data to solve business problems, high school-level math and statistics, and basic Python coding skills are assumed. Written by a recognized data science expert, Applied Machine Learning for Data Science Practitioners covers essential topics, including: Data Science Fundamentals that provide you with an overview of core concepts, laying the foundation for understanding ML. Data Preparation covers the process of framing ML problems and preparing data and features for modeling. ML Problem Solving introduces you to a range of ML algorithms, including Regression, Classification, Ranking, Clustering, Patterns, Time Series, and Anomaly Detection. Model Optimization explores frameworks, decision trees, and ensemble methods to enhance performance and guide the selection of the most effective model. ML Ethics addresses ethical considerations, including fairness, accountability, transparency, and ethics. Model Deployment and Monitoring focuses on production deployment, performance monitoring, and adapting to model drift.



Hands On Design Patterns With Python


Hands On Design Patterns With Python
DOWNLOAD
Author : Aditya Pratap Bhuyan
language : en
Publisher: Aditya Pratap Bhuyan
Release Date : 2025-03-07

Hands On Design Patterns With Python written by Aditya Pratap Bhuyan and has been published by Aditya Pratap Bhuyan this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-07 with Computers categories.


Hands-On Design Patterns with Python is an essential guide for software developers and engineers seeking to master design patterns and enhance their Python programming skills. Whether you're a beginner or an experienced Python developer, this book provides you with the tools and practical knowledge to implement and apply design patterns effectively in your projects. Design patterns are proven solutions to common software design challenges. This book dives into the 23 classic design patterns, categorizing them into Creational, Structural, and Behavioral patterns, offering real-world Python code examples and hands-on guidance. Each pattern is explained with clarity, demonstrating its real-world application and helping you write more modular, scalable, and maintainable code. Key Features: Comprehensive Coverage of Design Patterns: From fundamental patterns like Singleton and Factory to advanced ones like Command and State, this book covers a wide range of design patterns with easy-to-follow Python implementations. Practical Code Examples: Every pattern is accompanied by detailed Python code, showing you how to implement and adapt the pattern to solve common software design problems. Real-World Use Cases: Learn how to apply design patterns to solve real-world challenges. Through hands-on projects and case studies, you’ll discover how these patterns fit into various Python applications, from simple scripts to complex systems. Modern Python Insights: The book not only explains design patterns but also integrates Python-specific features, such as decorators, context managers, and type hinting, to make the code cleaner and more Pythonic. Best Practices for Software Design: Beyond just patterns, this book emphasizes writing clean, maintainable code, refactoring legacy systems, and building scalable architectures using design patterns. Who This Book is For: Software Developers looking to deepen their understanding of design patterns and enhance their Python skills. Python Engineers who want to write more efficient, reusable, and maintainable code. Software Architects seeking a structured approach to designing scalable systems with Python. Agile Teams or Scrum Masters who want to integrate design patterns into their development process for better collaboration and system reliability. What You’ll Learn: Creational Patterns like Singleton and Factory Method that simplify object creation. Structural Patterns such as Adapter, Composite, and Decorator that optimize system organization. Behavioral Patterns like Observer and Strategy that manage object interaction. Advanced Patterns like Dependency Injection and Event-Driven Architecture for modern, scalable applications. This book goes beyond theory and empowers you to apply what you've learned in real projects, whether you're building a simple application or developing enterprise-level software. You'll gain the skills to design better systems that are flexible, maintainable, and ready to evolve with your business needs. Hands-On Design Patterns with Python is a practical guide that equips you with everything you need to write cleaner, more efficient, and future-proof software.



Hands On Machine Learning With Scikit Learn Keras And Tensorflow


Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-05

Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Computers categories.


Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets



Hands On Machine Learning With R


Hands On Machine Learning With R
DOWNLOAD
Author : Brad Boehmke
language : en
Publisher: CRC Press
Release Date : 2019-11-07

Hands On Machine Learning With R written by Brad Boehmke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Business & Economics categories.


Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.



Machine Learning Made Simple


Machine Learning Made Simple
DOWNLOAD
Author : Daniel Lee
language : en
Publisher: Daniel Lee
Release Date : 2025-01-22

Machine Learning Made Simple written by Daniel Lee and has been published by Daniel Lee this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-22 with Computers categories.


"Machine Learning Made Simple: A Practical Introduction: Building Intelligent Algorithms from Scratch" is your go-to resource for comprehending and using machine learning without becoming bogged down in overwhelming complexity or technical jargon. This book, which simplifies the principles of machine learning and provides practical possibilities to develop clever algorithms step-by-step, is ideal for novices and inquisitive learners. The book begins by outlining the fundamental ideas, including supervised and unsupervised learning, and then it progressively guides you through the crucial steps involved in managing data, including cleaning, preprocessing, and visualizing it in order to derive insightful information. You will gain a comprehension of the theory and the ability to apply it on your own by learning how to build fundamental algorithms like linear regression from scratch with an emphasis on practicality. The book provides real-world examples and a case study where you will construct and assess a basic prediction model to further humanize the concepts. As you advance, you'll also discover how to enhance model performance and switch to specialized tools like Scikit-learn, which will allow you to expand your knowledge and skills. This book will enable you to understand the principles and begin developing clever solutions, regardless of whether you're a professional, tech enthusiast, or student interested in machine learning. Take the first step toward becoming an expert in machine learning by diving right in!



Hands On Genetic Algorithms With Python


Hands On Genetic Algorithms With Python
DOWNLOAD
Author : Eyal Wirsansky
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-07-12

Hands On Genetic Algorithms With Python written by Eyal Wirsansky and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-12 with Computers categories.


Explore the ever-growing world of genetic algorithms to build and enhance AI applications involving search, optimization, machine learning, deep learning, NLP, and XAI using Python libraries Key Features Learn how to implement genetic algorithms using Python libraries DEAP, scikit-learn, and NumPy Take advantage of cloud computing technology to increase the performance of your solutions Discover bio-inspired algorithms such as particle swarm optimization (PSO) and NEAT Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWritten by Eyal Wirsansky, a senior data scientist and AI researcher with over 25 years of experience and a research background in genetic algorithms and neural networks, Hands-On Genetic Algorithms with Python offers expert insights and practical knowledge to master genetic algorithms. After an introduction to genetic algorithms and their principles of operation, you’ll find out how they differ from traditional algorithms and the types of problems they can solve, followed by applying them to search and optimization tasks such as planning, scheduling, gaming, and analytics. As you progress, you’ll delve into explainable AI and apply genetic algorithms to AI to improve machine learning and deep learning models, as well as tackle reinforcement learning and NLP tasks. This updated second edition further expands on applying genetic algorithms to NLP and XAI and speeding up genetic algorithms with concurrency and cloud computing. You’ll also get to grips with the NEAT algorithm. The book concludes with an image reconstruction project and other related technologies for future applications. By the end of this book, you’ll have gained hands-on experience in applying genetic algorithms across a variety of fields, with emphasis on artificial intelligence with Python.What you will learn Use genetic algorithms to solve planning, scheduling, gaming, and analytics problems Create reinforcement learning, NLP, and explainable AI applications Enhance the performance of ML models and optimize deep learning architecture Deploy genetic algorithms using client-server architectures, enhancing scalability and computational efficiency Explore how images can be reconstructed using a set of semi-transparent shapes Delve into topics like elitism, niching, and multiplicity in genetic solutions to enhance optimization strategies and solution diversity Who this book is for If you’re a data scientist, software developer, AI enthusiast who wants to break into the world of genetic algorithms and apply them to real-world, intelligent applications as quickly as possible, this book is for you. Working knowledge of the Python programming language is required to get started with this book.



Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning


Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning
DOWNLOAD
Author : Uday Kamath
language : en
Publisher: Springer Nature
Release Date : 2021-12-15

Explainable Artificial Intelligence An Introduction To Interpretable Machine Learning written by Uday Kamath and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-15 with Computers categories.


This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning. --Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU This is a wonderful book! I’m pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I’ve seen that has up-to-date and well-rounded coverage. Thank you to the authors! --Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level. Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist. Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group



Learn Python 3 The Hard Way


Learn Python 3 The Hard Way
DOWNLOAD
Author : Zed A. Shaw
language : en
Publisher: Addison-Wesley Professional
Release Date : 2017-06-26

Learn Python 3 The Hard Way written by Zed A. Shaw and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-26 with Computers categories.


You Will Learn Python 3! Zed Shaw has perfected the world’s best system for learning Python 3. Follow it and you will succeed—just like the millions of beginners Zed has taught to date! You bring the discipline, commitment, and persistence; the author supplies everything else. In Learn Python 3 the Hard Way, you’ll learn Python by working through 52 brilliantly crafted exercises. Read them. Type their code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn how a computer works; what good programs look like; and how to read, write, and think about code. Zed then teaches you even more in 5+ hours of video where he shows you how to break, fix, and debug your code—live, as he’s doing the exercises. Install a complete Python environment Organize and write code Fix and break code Basic mathematics Variables Strings and text Interact with users Work with files Looping and logic Data structures using lists and dictionaries Program design Object-oriented programming Inheritance and composition Modules, classes, and objects Python packaging Automated testing Basic game development Basic web development It’ll be hard at first. But soon, you’ll just get it—and that will feel great! This course will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful, popular programming languages. You’ll be a Python programmer. This Book Is Perfect For Total beginners with zero programming experience Junior developers who know one or two languages Returning professionals who haven’t written code in years Seasoned professionals looking for a fast, simple, crash course in Python 3



Practical Machine Learning With Python


Practical Machine Learning With Python
DOWNLOAD
Author : Dipanjan Sarkar
language : en
Publisher: Apress
Release Date : 2017-12-20

Practical Machine Learning With Python written by Dipanjan Sarkar and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-20 with Computers categories.


Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries andframeworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students