[PDF] A Hands On Introduction To Machine Learning - eBooks Review

A Hands On Introduction To Machine Learning


A Hands On Introduction To Machine Learning
DOWNLOAD

Download A Hands On Introduction To Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Hands On Introduction To Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



A Hands On Introduction To Machine Learning


A Hands On Introduction To Machine Learning
DOWNLOAD
Author : Chirag Shah
language : en
Publisher: Cambridge University Press
Release Date : 2022-12-29

A Hands On Introduction To Machine Learning written by Chirag Shah and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-29 with Business & Economics categories.


A self-contained and practical introduction that assumes no prior knowledge of programming or machine learning.



Ai Crash Course


Ai Crash Course
DOWNLOAD
Author : Hadelin de Ponteves
language : en
Publisher:
Release Date : 2019-11-28

Ai Crash Course written by Hadelin de Ponteves and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-28 with Computers categories.


This friendly and accessible guide to AI theory and programming in Python requires no maths or data science background. Key Features Roll up your sleeves and start programming AI models No math, data science, or machine learning background required Packed with hands-on examples, illustrations, and clear step-by-step instructions 5 hands-on working projects put ideas into action and show step-by-step how to build intelligent software Book Description AI is changing the world - and with this book, anyone can start building intelligent software! Through his best-selling video courses, Hadelin de Ponteves has taught hundreds of thousands of people to write AI software. Now, for the first time, his hands-on, energetic approach is available as a book. Taking a graduated approach that starts with the basics before easing readers into more complicated formulas and notation, Hadelin helps you understand what you really need to build AI systems with reinforcement learning and deep learning. Five full working projects put the ideas into action, showing step-by-step how to build intelligent software using the best and easiest tools for AI programming: Google Colab Python TensorFlow Keras PyTorch AI Crash Course teaches everyone to build an AI to work in their applications. Once you've read this book, you're only limited by your imagination. What you will learn Master the key skills of deep learning, reinforcement learning, and deep reinforcement learning Understand Q-learning and deep Q-learning Learn from friendly, plain English explanations and practical activities Build fun projects, including a virtual-self-driving car Use AI to solve real-world business problems and win classic video games Build an intelligent, virtual robot warehouse worker Who this book is for If you want to add AI to your skillset, this book is for you. It doesn't require data science or machine learning knowledge. Just maths basics (high school level).



A Hands On Introduction To Data Science


A Hands On Introduction To Data Science
DOWNLOAD
Author : Chirag Shah
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-02

A Hands On Introduction To Data Science written by Chirag Shah and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-02 with Business & Economics categories.


An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.



Hands On Machine Learning With Ibm Watson


Hands On Machine Learning With Ibm Watson
DOWNLOAD
Author : James D. Miller
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-03-29

Hands On Machine Learning With Ibm Watson written by James D. Miller and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-29 with Computers categories.


Learn how to build complete machine learning systems with IBM Cloud and Watson Machine learning services Key FeaturesImplement data science and machine learning techniques to draw insights from real-world dataUnderstand what IBM Cloud platform can help you to implement cognitive insights within applicationsUnderstand the role of data representation and feature extraction in any machine learning systemBook Description IBM Cloud is a collection of cloud computing services for data analytics using machine learning and artificial intelligence (AI). This book is a complete guide to help you become well versed with machine learning on the IBM Cloud using Python. Hands-On Machine Learning with IBM Watson starts with supervised and unsupervised machine learning concepts, in addition to providing you with an overview of IBM Cloud and Watson Machine Learning. You'll gain insights into running various techniques, such as K-means clustering, K-nearest neighbor (KNN), and time series prediction in IBM Cloud with real-world examples. The book will then help you delve into creating a Spark pipeline in Watson Studio. You will also be guided through deep learning and neural network principles on the IBM Cloud using TensorFlow. With the help of NLP techniques, you can then brush up on building a chatbot. In later chapters, you will cover three powerful case studies, including the facial expression classification platform, the automated classification of lithofacies, and the multi-biometric identity authentication platform, helping you to become well versed with these methodologies. By the end of this book, you will be ready to build efficient machine learning solutions on the IBM Cloud and draw insights from the data at hand using real-world examples. What you will learnUnderstand key characteristics of IBM machine learning servicesRun supervised and unsupervised techniques in the cloudUnderstand how to create a Spark pipeline in Watson StudioImplement deep learning and neural networks on the IBM Cloud with TensorFlowCreate a complete, cloud-based facial expression classification solutionUse biometric traits to build a cloud-based human identification systemWho this book is for This beginner-level book is for data scientists and machine learning engineers who want to get started with IBM Cloud and its machine learning services using practical examples. Basic knowledge of Python and some understanding of machine learning will be useful.



Machine Learning Algorithms


Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-24

Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-24 with Computers categories.


Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.



Machine Learning With R The Tidyverse And Mlr


Machine Learning With R The Tidyverse And Mlr
DOWNLOAD
Author : Hefin Rhys
language : en
Publisher: Simon and Schuster
Release Date : 2020-03-20

Machine Learning With R The Tidyverse And Mlr written by Hefin Rhys and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-20 with Computers categories.


Summary Machine learning (ML) is a collection of programming techniques for discovering relationships in data. With ML algorithms, you can cluster and classify data for tasks like making recommendations or fraud detection and make predictions for sales trends, risk analysis, and other forecasts. Once the domain of academic data scientists, machine learning has become a mainstream business process, and tools like the easy-to-learn R programming language put high-quality data analysis in the hands of any programmer. Machine Learning with R, the tidyverse, and mlr teaches you widely used ML techniques and how to apply them to your own datasets using the R programming language and its powerful ecosystem of tools. This book will get you started! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the book Machine Learning with R, the tidyverse, and mlr gets you started in machine learning using R Studio and the awesome mlr machine learning package. This practical guide simplifies theory and avoids needlessly complicated statistics or math. All core ML techniques are clearly explained through graphics and easy-to-grasp examples. In each engaging chapter, you’ll put a new algorithm into action to solve a quirky predictive analysis problem, including Titanic survival odds, spam email filtering, and poisoned wine investigation. What's inside Using the tidyverse packages to process and plot your data Techniques for supervised and unsupervised learning Classification, regression, dimension reduction, and clustering algorithms Statistics primer to fill gaps in your knowledge About the reader For newcomers to machine learning with basic skills in R. About the author Hefin I. Rhys is a senior laboratory research scientist at the Francis Crick Institute. He runs his own YouTube channel of screencast tutorials for R and RStudio. Table of contents: PART 1 - INTRODUCTION 1.Introduction to machine learning 2. Tidying, manipulating, and plotting data with the tidyverse PART 2 - CLASSIFICATION 3. Classifying based on similarities with k-nearest neighbors 4. Classifying based on odds with logistic regression 5. Classifying by maximizing separation with discriminant analysis 6. Classifying with naive Bayes and support vector machines 7. Classifying with decision trees 8. Improving decision trees with random forests and boosting PART 3 - REGRESSION 9. Linear regression 10. Nonlinear regression with generalized additive models 11. Preventing overfitting with ridge regression, LASSO, and elastic net 12. Regression with kNN, random forest, and XGBoost PART 4 - DIMENSION REDUCTION 13. Maximizing variance with principal component analysis 14. Maximizing similarity with t-SNE and UMAP 15. Self-organizing maps and locally linear embedding PART 5 - CLUSTERING 16. Clustering by finding centers with k-means 17. Hierarchical clustering 18. Clustering based on density: DBSCAN and OPTICS 19. Clustering based on distributions with mixture modeling 20. Final notes and further reading



Blockchain Technology For Ioe


Blockchain Technology For Ioe
DOWNLOAD
Author : Arun Solanki
language : en
Publisher: CRC Press
Release Date : 2023-09-29

Blockchain Technology For Ioe written by Arun Solanki and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-29 with Computers categories.


This book explores opportunities and challenges in the field of Internet of Everything (IoE) security and privacy under the umbrella of distributed ledger technologies and blockchain technology including distributed consensus mechanisms, crypto-sensors, encryption algorithms, and fault tolerance mechanisms for devices and systems. It focusses on the applicability of blockchain technology, including architectures and platforms for blockchain and IoE, authentication and encryption algorithms for IoE, malicious transactions detection, blockchain for forensics, and so forth. Outlines the major benefits as well as challenges associated with integration of blockchain with IoE; Describes detailed framework to provide security in IoE using blockchain technology; Reviews various issues while using distributed ledger technologies for IoE; Provides comprehensive coverage of blockchain for IoE in securing information including encryption schemes, authentication, security issues, and challenges; Includes case studies in realistic situations like healthcare informatics, smart industry, and smart transportation. This book is aimed at researchers and graduate students in computing, cryptography, IoT, computer engineering, and networks.



Ai Crash Course


Ai Crash Course
DOWNLOAD
Author : Hadelin de Ponteves
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-11-29

Ai Crash Course written by Hadelin de Ponteves and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-29 with Computers categories.


Unlock the power of artificial intelligence with top Udemy AI instructor Hadelin de Ponteves. Key FeaturesLearn from friendly, plain English explanations and practical activitiesPut ideas into action with 5 hands-on projects that show step-by-step how to build intelligent softwareUse AI to win classic video games and construct a virtual self-driving carBook Description Welcome to the Robot World ... and start building intelligent software now! Through his best-selling video courses, Hadelin de Ponteves has taught hundreds of thousands of people to write AI software. Now, for the first time, his hands-on, energetic approach is available as a book. Starting with the basics before easing you into more complicated formulas and notation, AI Crash Course gives you everything you need to build AI systems with reinforcement learning and deep learning. Five full working projects put the ideas into action, showing step-by-step how to build intelligent software using the best and easiest tools for AI programming, including Python, TensorFlow, Keras, and PyTorch. AI Crash Course teaches everyone to build an AI to work in their applications. Once you've read this book, you're only limited by your imagination. What you will learnMaster the basics of AI without any previous experienceBuild fun projects, including a virtual-self-driving car and a robot warehouse workerUse AI to solve real-world business problemsLearn how to code in PythonDiscover the 5 principles of reinforcement learningCreate your own AI toolkitWho this book is for If you want to add AI to your skillset, this book is for you. It doesn't require data science or machine learning knowledge. Just maths basics (high school level).



Hands On Machine Learning With C


Hands On Machine Learning With C
DOWNLOAD
Author : Kirill Kolodiazhnyi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2025-01-24

Hands On Machine Learning With C written by Kirill Kolodiazhnyi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-24 with Computers categories.


Apply supervised and unsupervised machine learning algorithms using C++ libraries, such as PyTorch C++ API, Flashlight, Blaze, mlpack, and dlib using real-world examples and datasets Key Features Familiarize yourself with data processing, performance measuring, and model selection using various C++ libraries Implement practical machine learning and deep learning techniques to build smart models Deploy machine learning models to work on mobile and embedded devices Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWritten by a seasoned software engineer with several years of industry experience, this book will teach you the basics of machine learning (ML) and show you how to use C++ libraries, along with helping you create supervised and unsupervised ML models. You’ll gain hands-on experience in tuning and optimizing a model for various use cases, enabling you to efficiently select models and measure performance. The chapters cover techniques such as product recommendations, ensemble learning, anomaly detection, sentiment analysis, and object recognition using modern C++ libraries. You’ll also learn how to overcome production and deployment challenges on mobile platforms, and see how the ONNX model format can help you accomplish these tasks. This new edition has been updated with key topics such as sentiment analysis implementation using transfer learning and transformer-based models, as well as tracking and visualizing ML experiments with MLflow. An additional section shows you how to use Optuna for hyperparameter selection. The section on model deployment into mobile platform now includes a detailed explanation of real-time object detection for Android with C++. By the end of this C++ book, you’ll have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems.What you will learn Employ key machine learning algorithms using various C++ libraries Load and pre-process different data types to suitable C++ data structures Find out how to identify the best parameters for a machine learning model Use anomaly detection for filtering user data Apply collaborative filtering to manage dynamic user preferences Utilize C++ libraries and APIs to manage model structures and parameters Implement C++ code for object detection using a modern neural network Who this book is for This book is for beginners looking to explore machine learning algorithms and techniques using C++. This book is also valuable for data analysts, scientists, and developers who want to implement machine learning models in production. Working knowledge of C++ is needed to make the most of this book.



Machine Learning Based Modelling In Atomic Layer Deposition Processes


Machine Learning Based Modelling In Atomic Layer Deposition Processes
DOWNLOAD
Author : Oluwatobi Adeleke
language : en
Publisher: CRC Press
Release Date : 2023-12-15

Machine Learning Based Modelling In Atomic Layer Deposition Processes written by Oluwatobi Adeleke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-15 with Technology & Engineering categories.


While thin film technology has benefited greatly from artificial intelligence (AI) and machine learning (ML) techniques, there is still much to be learned from a full-scale exploration of these technologies in atomic layer deposition (ALD). This book provides in-depth information regarding the application of ML-based modeling techniques in thin film technology as a standalone approach and integrated with the classical simulation and modeling methods. It is the first of its kind to present detailed information regarding approaches in ML-based modeling, optimization, and prediction of the behaviors and characteristics of ALD for improved process quality control and discovery of new materials. As such, this book fills significant knowledge gaps in the existing resources as it provides extensive information on ML and its applications in film thin technology. Offers an in-depth overview of the fundamentals of thin film technology, state-of-the-art computational simulation approaches in ALD, ML techniques, algorithms, applications, and challenges. Establishes the need for and significance of ML applications in ALD while introducing integration approaches for ML techniques with computation simulation approaches. Explores the application of key techniques in ML, such as predictive analysis, classification techniques, feature engineering, image processing capability, and microstructural analysis of deep learning algorithms and generative model benefits in ALD. Helps readers gain a holistic understanding of the exciting applications of ML-based solutions to ALD problems and apply them to real-world issues. Aimed at materials scientists and engineers, this book fills significant knowledge gaps in existing resources as it provides extensive information on ML and its applications in film thin technology. It also opens space for future intensive research and intriguing opportunities for ML-enhanced ALD processes, which scale from academic to industrial applications.