A Logical Approach To Discrete Math

DOWNLOAD
Download A Logical Approach To Discrete Math PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Logical Approach To Discrete Math book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A Logical Approach To Discrete Math
DOWNLOAD
Author : David Gries
language : en
Publisher: Springer Science & Business Media
Release Date : 1993-10-22
A Logical Approach To Discrete Math written by David Gries and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-10-22 with Computers categories.
Here, the authors strive to change the way logic and discrete math are taught in computer science and mathematics: while many books treat logic simply as another topic of study, this one is unique in its willingness to go one step further. The book traets logic as a basic tool which may be applied in essentially every other area.
A Logical Approach To Discrete Math
DOWNLOAD
Author : David Gries
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
A Logical Approach To Discrete Math written by David Gries and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Computers categories.
This text attempts to change the way we teach logic to beginning students. Instead of teaching logic as a subject in isolation, we regard it as a basic tool and show how to use it. We strive to give students a skill in the propo sitional and predicate calculi and then to exercise that skill thoroughly in applications that arise in computer science and discrete mathematics. We are not logicians, but programming methodologists, and this text reflects that perspective. We are among the first generation of scientists who are more interested in using logic than in studying it. With this text, we hope to empower further generations of computer scientists and math ematicians to become serious users of logic. Logic is the glue Logic is the glue that binds together methods of reasoning, in all domains. The traditional proof methods -for example, proof by assumption, con tradiction, mutual implication, and induction- have their basis in formal logic. Thus, whether proofs are to be presented formally or informally, a study of logic can provide understanding.
Logic And Discrete Mathematics
DOWNLOAD
Author : Willem Conradie
language : en
Publisher: John Wiley & Sons
Release Date : 2015-05-08
Logic And Discrete Mathematics written by Willem Conradie and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-08 with Mathematics categories.
Solutions manual to accompany Logic and Discrete Mathematics: A Concise Introduction This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in this accompanying solutions manual.
Discrete Mathematics
DOWNLOAD
Author : Oscar Levin
language : en
Publisher:
Release Date : 2016-08-16
Discrete Mathematics written by Oscar Levin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-16 with categories.
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions. Update: as of July 2017, this 2nd edition has been updated, correcting numerous typos and a few mathematical errors. Pagination is almost identical to the earlier printing of the 2nd edition. For a list of changes, see the book's website: http: //discretetext.oscarlevin.com
Fundamental Approach To Discrete Mathematics
DOWNLOAD
Author : D.P. Acharjya
language : en
Publisher: New Age International
Release Date : 2005
Fundamental Approach To Discrete Mathematics written by D.P. Acharjya and has been published by New Age International this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Computer science categories.
Salient Features * Mathematical Logic, Fundamental Concepts, Proofs And Mathematical Induction (Chapter 1) * Set Theory, Fundamental Concepts, Theorems, Proofs, Venn Diagrams, Product Of Sets, Application Of Set Theory And Fundamental Products (Chapter 2) * An Introduction To Binary Relations And Concepts, Graphs, Arrow Diagrams, Relation Matrix, Composition Of Relations, Types Of Relation, Partial Order Relations, Total Order Relation, Closure Of Relations, Poset, Equivalence Classes And Partitions. (Chapter 3) * An Introduction To Functions And Basic Concepts, Graphs, Composition Of Functions, Floor And Ceiling Function, Characteristic Function, Remainder Function, Signum Function And Introduction To Hash Function. (Chapter 4) * The Algebraic Structure Includes Group Theory And Ring Theory. Group Theory Includes Group, Subgroups, Cyclic Group, Cosets, Homomorphism, Introduction To Codes And Group Codes And Error Correction For Block Code. The Ring Theory Includes General Definition, Fundamental Concepts, Integral Domain, Division Ring, Subring, Homomorphism, An Isomorphism And Pigeonhole Principle (Chapters 5, 6 And 7) * A Treatment Of Boolean Algebras That Emphasizes The Relation Of Boolean Algebras To Combinatorial Circuits. (Chapter 8) * An Introduction To Lattices And Basic Concepts (Chapter 9) * A Brief Introduction To Graph Theory Is Discussed. Elements Of Graph Theory Are Indispensable In Almost All Computer Science Areas. Examples Are Given Of Its Use In Such Areas As Minimum Spanning Tree, Shortest Path Problems (Dijkastra'S Algorithm And Floyd-Warshall Algorithm) And Traveling Salesman Problem. The Computer Representation And Manipulation Of Graphs Are Also Discussed So That Certain Important Algorithms Can Be Included(Chapters 10 And 11) * A Strong Emphasis Is Given On Understanding The Theorems And Its Applications * Numbers Of Illustrations Are Used Throughout The Book For Explaining The Concepts And Its Applications. * Figures And Tables Are Used To Illustrate Concepts, To Elucidate Proofs And To Motivate The Material. The Captions Of These Figures Provide Additional Explanation. Besides This, A Number Of Exercises Are Given For Practice
A Spiral Workbook For Discrete Mathematics
DOWNLOAD
Author : Harris Kwong
language : en
Publisher: Open SUNY Textbooks
Release Date : 2015-11-06
A Spiral Workbook For Discrete Mathematics written by Harris Kwong and has been published by Open SUNY Textbooks this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-06 with Mathematics categories.
A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills.
Discrete Mathematics For Computer Science
DOWNLOAD
Author : John Schlipf
language : en
Publisher:
Release Date : 2020-09-22
Discrete Mathematics For Computer Science written by John Schlipf and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-22 with categories.
Discrete Mathematics for Computer Science by Gary Haggard , John Schlipf , Sue Whitesides A major aim of this book is to help you develop mathematical maturity-elusive as thisobjective may be. We interpret this as preparing you to understand how to do proofs ofresults about discrete structures that represent concepts you deal with in computer science.A correct proof can be viewed as a set of reasoned steps that persuade another student,the course grader, or the instructor about the truth of the assertion. Writing proofs is hardwork even for the most experienced person, but it is a skill that needs to be developedthrough practice. We can only encourage you to be patient with the process. Keep tryingout your proofs on other students, graders, and instructors to gain the confidence that willhelp you in using proofs as a natural part of your ability to solve problems and understandnew material. The six chapters referred to contain the fundamental topics. Thesechapters are used to guide students in learning how to express mathematically precise ideasin the language of mathematics.The two chapters dealing with graph theory and combinatorics are also core materialfor a discrete structures course, but this material always seems more intuitive to studentsthan the formalism of the first four chapters. Topics from the first four chapters are freelyused in these later chapters. The chapter on discrete probability builds on the chapter oncombinatorics. The chapter on the analysis of algorithms uses notions from the core chap-ters but can be presented at an informal level to motivate the topic without spending a lot oftime with the details of the chapter. Finally, the chapter on recurrence relations primarilyuses the early material on induction and an intuitive understanding of the chapter on theanalysis of algorithms. The material in Chapters 1 through 4 deals with sets, logic, relations, and functions.This material should be mastered by all students. A course can cover this material at differ-ent levels and paces depending on the program and the background of the students whenthey take the course. Chapter 6 introduces graph theory, with an emphasis on examplesthat are encountered in computer science. Undirected graphs, trees, and directed graphsare studied. Chapter 7 deals with counting and combinatorics, with topics ranging from theaddition and multiplication principles to permutations and combinations of distinguishableor indistinguishable sets of elements to combinatorial identities.Enrichment topics such as relational databases, languages and regular sets, uncom-putability, finite probability, and recurrence relations all provide insights regarding howdiscrete structures describe the important notions studied and used in computer science.Obviously, these additional topics cannot be dealt with along with the all the core materialin a one-semester course, but the topics provide attractive alternatives for a variety of pro-grams. This text can also be used as a reference in courses. The many problems provideample opportunity for students to deal with the material presented.
Invitation To Discrete Mathematics
DOWNLOAD
Author : Jiří Matoušek
language : en
Publisher: Oxford University Press
Release Date : 2009
Invitation To Discrete Mathematics written by Jiří Matoušek and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.
A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.
Introductory Discrete Mathematics
DOWNLOAD
Author : V. K. Balakrishnan
language : en
Publisher: Courier Corporation
Release Date : 1996-01-01
Introductory Discrete Mathematics written by V. K. Balakrishnan and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-01-01 with Mathematics categories.
This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. Geared toward mathematics and computer science majors, it emphasizes applications, offering more than 200 exercises to help students test their grasp of the material and providing answers to selected exercises. 1991 edition.