[PDF] A Mathematical Modeling Approach From Nonlinear Dynamics To Complex Systems - eBooks Review

A Mathematical Modeling Approach From Nonlinear Dynamics To Complex Systems


A Mathematical Modeling Approach From Nonlinear Dynamics To Complex Systems
DOWNLOAD

Download A Mathematical Modeling Approach From Nonlinear Dynamics To Complex Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Mathematical Modeling Approach From Nonlinear Dynamics To Complex Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



A Mathematical Modeling Approach From Nonlinear Dynamics To Complex Systems


A Mathematical Modeling Approach From Nonlinear Dynamics To Complex Systems
DOWNLOAD
Author : Elbert E. N. Macau
language : en
Publisher: Springer
Release Date : 2018-06-14

A Mathematical Modeling Approach From Nonlinear Dynamics To Complex Systems written by Elbert E. N. Macau and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-14 with Technology & Engineering categories.


This book collects recent developments in nonlinear and complex systems. It provides up-to-date theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers symmetry groups, conservation laws, risk reduction management, barriers in Hamiltonian systems, and synchronization and chaotic transient. Illustrating mathematical modeling applications to nonlinear physics and nonlinear engineering, the book is ideal for academic and industrial researchers concerned with machinery and controls, manufacturing, and controls. · Introduces new concepts for understanding and modeling complex systems; · Explains risk reduction management in complex systems; · Examines the symmetry group approach to understanding complex systems; · Illustrates the relation between transient chaos and crises.



Methods Of Mathematical Modelling And Computation For Complex Systems


Methods Of Mathematical Modelling And Computation For Complex Systems
DOWNLOAD
Author : Jagdev Singh
language : en
Publisher: Springer Nature
Release Date : 2021-08-26

Methods Of Mathematical Modelling And Computation For Complex Systems written by Jagdev Singh and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-26 with Technology & Engineering categories.


This book contains several contemporary topics in the areas of mathematical modelling and computation for complex systems. The readers find several new mathematical methods, mathematical models and computational techniques having significant relevance in studying various complex systems. The chapters aim to enrich the understanding of topics presented by carefully discussing the associated problems and issues, possible solutions and their applications or relevance in other scientific areas of study and research. The book is a valuable resource for graduate students, researchers and educators in understanding and studying various new aspects associated with complex systems. Key Feature • The chapters include theory and application in a mix and balanced way. • Readers find reasonable details of developments concerning a topic included in this book. • The text is emphasized to present in self-contained manner with inclusion of new research problems and questions.



Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis


Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis
DOWNLOAD
Author : Denis Blackmore
language : en
Publisher: World Scientific
Release Date : 2011-03-04

Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis written by Denis Blackmore and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-04 with Mathematics categories.


This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.



Applications Of Nonlinear Dynamics


Applications Of Nonlinear Dynamics
DOWNLOAD
Author : Visarath In
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-02-11

Applications Of Nonlinear Dynamics written by Visarath In and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-11 with Technology & Engineering categories.


The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations,lasers,andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and systems.



Mathematical Modeling Of Earth S Dynamical Systems


Mathematical Modeling Of Earth S Dynamical Systems
DOWNLOAD
Author : Rudy Slingerland
language : en
Publisher: Princeton University Press
Release Date : 2011-03-28

Mathematical Modeling Of Earth S Dynamical Systems written by Rudy Slingerland and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-28 with Science categories.


A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html



Dynamical And Complex Systems


Dynamical And Complex Systems
DOWNLOAD
Author : Shaun Bullett
language : en
Publisher: World Scientific
Release Date : 2016-12-22

Dynamical And Complex Systems written by Shaun Bullett and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-22 with Mathematics categories.


This book leads readers from a basic foundation to an advanced level understanding of dynamical and complex systems. It is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as applied dynamical systems, Lotka-Volterra dynamical systems, applied dynamical systems theory, dynamical systems in cosmology, aperiodic order, and complex systems dynamics.Dynamical and Complex Systems is the fifth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.



Dynamic Mode Decomposition


Dynamic Mode Decomposition
DOWNLOAD
Author : J. Nathan Kutz
language : en
Publisher: SIAM
Release Date : 2016-11-23

Dynamic Mode Decomposition written by J. Nathan Kutz and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-23 with Science categories.


Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.



Discrete Dynamical Models


Discrete Dynamical Models
DOWNLOAD
Author : Ernesto Salinelli
language : en
Publisher: Springer
Release Date : 2014-06-11

Discrete Dynamical Models written by Ernesto Salinelli and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-11 with Mathematics categories.


This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.



Methods Of Qualitative Theory In Nonlinear Dynamics


Methods Of Qualitative Theory In Nonlinear Dynamics
DOWNLOAD
Author : Leonid P. Shilnikov
language : en
Publisher: World Scientific
Release Date : 1998

Methods Of Qualitative Theory In Nonlinear Dynamics written by Leonid P. Shilnikov and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Science categories.


Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need. Following the footsteps of Poincare, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form. In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced studentsof nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.



Nonlinear Dynamics Of Interacting Populations


Nonlinear Dynamics Of Interacting Populations
DOWNLOAD
Author : A. D. Bazykin
language : en
Publisher: World Scientific
Release Date : 1998

Nonlinear Dynamics Of Interacting Populations written by A. D. Bazykin and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Science categories.


This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of “dangerous boundaries” in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory.