A Modern Approach To Regression With R

DOWNLOAD
Download A Modern Approach To Regression With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Modern Approach To Regression With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A Modern Approach To Regression With R
DOWNLOAD
Author : Simon Sheather
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-03-11
A Modern Approach To Regression With R written by Simon Sheather and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-11 with Mathematics categories.
This book focuses on tools and techniques for building regression models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to base inferences or conclusions only on valid models. Plots are shown to be an important tool for both building regression models and assessing their validity. We shall see that deciding what to plot and how each plot should be interpreted will be a major challenge. In order to overcome this challenge we shall need to understand the mathematical properties of the fitted regression models and associated diagnostic procedures. As such this will be an area of focus throughout the book. In particular, we shall carefully study the properties of resi- als in order to understand when patterns in residual plots provide direct information about model misspecification and when they do not. The regression output and plots that appear throughout the book have been gen- ated using R. The output from R that appears in this book has been edited in minor ways. On the book web site you will find the R code used in each example in the text.
A Modern Approach To Regression With R
DOWNLOAD
Author : Simon Sheather
language : en
Publisher: Springer
Release Date : 2009-02-27
A Modern Approach To Regression With R written by Simon Sheather and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-27 with Mathematics categories.
This book focuses on tools and techniques for building regression models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to base inferences or conclusions only on valid models. Plots are shown to be an important tool for both building regression models and assessing their validity. We shall see that deciding what to plot and how each plot should be interpreted will be a major challenge. In order to overcome this challenge we shall need to understand the mathematical properties of the fitted regression models and associated diagnostic procedures. As such this will be an area of focus throughout the book. In particular, we shall carefully study the properties of resi- als in order to understand when patterns in residual plots provide direct information about model misspecification and when they do not. The regression output and plots that appear throughout the book have been gen- ated using R. The output from R that appears in this book has been edited in minor ways. On the book web site you will find the R code used in each example in the text.
Modern Regression Techniques Using R
DOWNLOAD
Author : Daniel B Wright
language : en
Publisher: SAGE
Release Date : 2009-02-19
Modern Regression Techniques Using R written by Daniel B Wright and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-19 with Mathematics categories.
Statistics is the language of modern empirical social and behavioural science and the varieties of regression form the basis of this language. Statistical and computing advances have led to new and exciting regressions that have become the necessary tools for any researcher in these fields. In a way that is refreshingly engaging and readable, Wright and London describe the most useful of these techniques and provide step-by-step instructions, using the freeware R, to analyze datasets that can be located on the books′ webpage: www.sagepub.co.uk/wrightandlondon. Techniques covered in this book include multilevel modeling, ANOVA and ANCOVA, path analysis, mediation and moderation, logistic regression (generalized linear models), generalized additive models, and robust methods. These are all tested out using a range of real research examples conducted by the authors in every chapter. Given the wide coverage of techniques, this book will be essential reading for any advanced undergraduate and graduate student (particularly in psychology) and for more experienced researchers wanting to learn how to apply some of the more recent statistical techniques to their datasets. The Authors are donating all royalties from the book to the American Partnership for Eosinophilic Disorders.
Modern Statistics With R
DOWNLOAD
Author : Måns Thulin
language : en
Publisher:
Release Date : 2024
Modern Statistics With R written by Måns Thulin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Mathematics categories.
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Biostatistics With R A Guide For Medical Doctors
DOWNLOAD
Author : Marco Moscarelli
language : en
Publisher: Springer Nature
Release Date : 2023-08-14
Biostatistics With R A Guide For Medical Doctors written by Marco Moscarelli and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-14 with Medical categories.
This book aims not only to introduce fundamental biostatistics topics but to explain them through R-project (R-studio). 'R' is perhaps the more used statistical software in the medical field. It is structured as a 'scientific journey' and comes with a sham yet realistic dataset ready to be analysed. The dataset along with the R-script can be downloaded from GitHub, and each chapter has dedicated scripts that will enhance the understanding of R and biostatistics. Specifically designed for whoever works in the medical-academic environment, this practical guide will help the reader to become familiar with basic to advanced biostatistics topic (descriptive - analysis / regression etc.) and to gain solid knowledge of R.
Bayesian Computation With R
DOWNLOAD
Author : Jim Albert
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-20
Bayesian Computation With R written by Jim Albert and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-20 with Mathematics categories.
There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN).
Data Science With R For Psychologists And Healthcare Professionals
DOWNLOAD
Author : Christian Ryan
language : en
Publisher: CRC Press
Release Date : 2021-12-22
Data Science With R For Psychologists And Healthcare Professionals written by Christian Ryan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-22 with Business & Economics categories.
This introduction to R for students of psychology and health sciences aims to fast-track the reader through some of the most difficult aspects of learning to do data analysis and statistics. It demonstrates the benefits for reproducibility and reliability of using a programming language over commercial software packages such as SPSS. The early chapters build at a gentle pace, to give the reader confidence in moving from a point-and-click software environment, to the more robust and reliable world of statistical coding. This is a thoroughly modern and up-to-date approach using RStudio and the tidyverse. A range of R packages relevant to psychological research are discussed in detail. A great deal of research in the health sciences concerns questionnaire data, which may require recoding, aggregation and transformation before quantitative techniques and statistical analysis can be applied. R offers many useful and transparent functions to process data and check psychometric properties. These are illustrated in detail, along with a wide range of tools R affords for data visualisation. Many introductory statistics books for the health sciences rely on toy examples - in contrast, this book benefits from utilising open datasets from published psychological studies, to both motivate and demonstrate the transition from data manipulation and analysis to published report. R Markdown is becoming the preferred method for communicating in the open science community. This book also covers the detail of how to integrate the use of R Markdown documents into the research workflow and how to use these in preparing manuscripts for publication, adhering to the latest APA style guidelines.
A Course In Statistics With R
DOWNLOAD
Author : Prabhanjan N. Tattar
language : en
Publisher: John Wiley & Sons
Release Date : 2016-03-15
A Course In Statistics With R written by Prabhanjan N. Tattar and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-15 with Computers categories.
Integrates the theory and applications of statistics using R A Course in Statistics with R has been written to bridge the gap between theory and applications and explain how mathematical expressions are converted into R programs. The book has been primarily designed as a useful companion for a Masters student during each semester of the course, but will also help applied statisticians in revisiting the underpinnings of the subject. With this dual goal in mind, the book begins with R basics and quickly covers visualization and exploratory analysis. Probability and statistical inference, inclusive of classical, nonparametric, and Bayesian schools, is developed with definitions, motivations, mathematical expression and R programs in a way which will help the reader to understand the mathematical development as well as R implementation. Linear regression models, experimental designs, multivariate analysis, and categorical data analysis are treated in a way which makes effective use of visualization techniques and the related statistical techniques underlying them through practical applications, and hence helps the reader to achieve a clear understanding of the associated statistical models. Key features: Integrates R basics with statistical concepts Provides graphical presentations inclusive of mathematical expressions Aids understanding of limit theorems of probability with and without the simulation approach Presents detailed algorithmic development of statistical models from scratch Includes practical applications with over 50 data sets
Mathematical Modeling And Simulation
DOWNLOAD
Author : Kai Velten
language : en
Publisher: John Wiley & Sons
Release Date : 2024-10-07
Mathematical Modeling And Simulation written by Kai Velten and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-07 with Science categories.
Learn to use modeling and simulation methods to attack real-world problems, from physics to engineering, from life sciences to process engineering Reviews of the first edition (2009): "Perfectly fits introductory modeling courses [...] and is an enjoyable reading in the first place. Highly recommended [...]" —Zentralblatt MATH, European Mathematical Society, 2009 "This book differs from almost all other available modeling books in that [the authors address] both mechanistic and statistical models as well as 'hybrid' models. [...] The modeling range is enormous." —SIAM Society of Industrial and Applied Mathematics, USA, 2011 This completely revised and substantially extended second edition answers the most important questions in the field of modeling: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? What kind of mathematical problems appear and how can these be efficiently solved using professional free of charge open source software? The book addresses undergraduates and practitioners alike. Although only basic knowledge of calculus and linear algebra is required, the most important mathematical structures are discussed in sufficient detail, ranging from statistical models to partial differential equations and accompanied by examples from biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical, and process engineering. About 200 pages of additional material include a unique chapter on virtualization, Crash Courses on the data analysis and programming languages R and Python and on the computer algebra language Maxima, many new methods and examples scattered throughout the book and an update of all software-related procedures and a comprehensive book software providing templates for typical modeling tasks in thousands of code lines. The book software includes GmLinux, an operating system specifically designed for this book providing preconfigured and ready-to-use installations of OpenFOAM, Salome, FreeCAD/CfdOF workbench, ParaView, R, Maxima/wxMaxima, Python, Rstudio, Quarto/Markdown and other free of charge open source software used in the book.
Handbook Of Statistical Methods And Analyses In Sports
DOWNLOAD
Author : Jim Albert
language : en
Publisher: CRC Press
Release Date : 2017-02-03
Handbook Of Statistical Methods And Analyses In Sports written by Jim Albert and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-03 with Mathematics categories.
This handbook will provide both overviews of statistical methods in sports and in-depth treatment of critical problems and challenges confronting statistical research in sports. The material in the handbook will be organized by major sport (baseball, football, hockey, basketball, and soccer) followed by a section on other sports and general statistical design and analysis issues that are common to all sports. This handbook has the potential to become the standard reference for obtaining the necessary background to conduct serious statistical analyses for sports applications and to appreciate scholarly work in this expanding area.