[PDF] A Reinforcement One Shot Active Learning Approach For Aircraft Type Recognition - eBooks Review

A Reinforcement One Shot Active Learning Approach For Aircraft Type Recognition


A Reinforcement One Shot Active Learning Approach For Aircraft Type Recognition
DOWNLOAD

Download A Reinforcement One Shot Active Learning Approach For Aircraft Type Recognition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Reinforcement One Shot Active Learning Approach For Aircraft Type Recognition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



A Reinforcement One Shot Active Learning Approach For Aircraft Type Recognition


A Reinforcement One Shot Active Learning Approach For Aircraft Type Recognition
DOWNLOAD
Author : HONGLAN HUANG
language : en
Publisher: Infinite Study
Release Date :

A Reinforcement One Shot Active Learning Approach For Aircraft Type Recognition written by HONGLAN HUANG and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


Target recognition is an important aspect of air trafc management, but the study on automatic aircraft identication is still in the exploratory stage. Rapid aircraft processing and accurate aircraft type recognition remain challenging tasks due to the high-speed movement of the aircraft against complex backgrounds. Active learning, as a promising research topic of machine learning in recent decades, can use less labeled data to obtain the same model accuracy as supervised learning, which greatly reduces the cost of labeling a dataset.



Reinforcement Learning Second Edition


Reinforcement Learning Second Edition
DOWNLOAD
Author : Richard S. Sutton
language : en
Publisher: MIT Press
Release Date : 2018-11-13

Reinforcement Learning Second Edition written by Richard S. Sutton and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-13 with Computers categories.


The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.



Aviation Psychology Program Research Reports


Aviation Psychology Program Research Reports
DOWNLOAD
Author : United States. Army Air Forces
language : en
Publisher:
Release Date : 1947

Aviation Psychology Program Research Reports written by United States. Army Air Forces and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1947 with Aviation psychology categories.




Motion Picture Testing And Research


Motion Picture Testing And Research
DOWNLOAD
Author : James Jerome Gibson
language : en
Publisher:
Release Date : 1947

Motion Picture Testing And Research written by James Jerome Gibson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1947 with Ability categories.


Historical background of motion picture testing and research; The use of motion pictures in the design of psychological tests; Technique of construction of motion picture tests; The presentation of motion picture tests and other films requiring activity by the group; Aptitude tests; Proficiency tests; Research on the recognition of aircraft; Pictures as substitutes for visual realities; Perception and judgment of aerial space and distance as potential factors in pilot selection and training; The instructional techniques peculiar to motion pictures.



Reinforcement Learning And Dynamic Programming Using Function Approximators


Reinforcement Learning And Dynamic Programming Using Function Approximators
DOWNLOAD
Author : Lucian Busoniu
language : en
Publisher: CRC Press
Release Date : 2017-07-28

Reinforcement Learning And Dynamic Programming Using Function Approximators written by Lucian Busoniu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-28 with Computers categories.


From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.



Practical Machine Learning And Image Processing


Practical Machine Learning And Image Processing
DOWNLOAD
Author : Himanshu Singh
language : en
Publisher: Apress
Release Date : 2019-02-26

Practical Machine Learning And Image Processing written by Himanshu Singh and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-26 with Computers categories.


Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the conceptsin Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will Learn Discover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.



Reinforcement Learning And Stochastic Optimization


Reinforcement Learning And Stochastic Optimization
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-15

Reinforcement Learning And Stochastic Optimization written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-15 with Mathematics categories.


REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.



Structural Health Monitoring Damage Detection Systems For Aerospace


Structural Health Monitoring Damage Detection Systems For Aerospace
DOWNLOAD
Author : Markus G. R. Sause
language : en
Publisher: Springer Nature
Release Date : 2021-09-22

Structural Health Monitoring Damage Detection Systems For Aerospace written by Markus G. R. Sause and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-22 with Technology & Engineering categories.


This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.



Bulletin Of The Atomic Scientists


Bulletin Of The Atomic Scientists
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1955-04

Bulletin Of The Atomic Scientists written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1955-04 with categories.


The Bulletin of the Atomic Scientists is the premier public resource on scientific and technological developments that impact global security. Founded by Manhattan Project Scientists, the Bulletin's iconic "Doomsday Clock" stimulates solutions for a safer world.



Aviation Psychology Program Research Reports


Aviation Psychology Program Research Reports
DOWNLOAD
Author : United States. Army Air Forces
language : en
Publisher:
Release Date : 1947

Aviation Psychology Program Research Reports written by United States. Army Air Forces and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1947 with categories.