[PDF] A Simple Path To Convex Analysis And Applications - eBooks Review

A Simple Path To Convex Analysis And Applications


A Simple Path To Convex Analysis And Applications
DOWNLOAD

Download A Simple Path To Convex Analysis And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Simple Path To Convex Analysis And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



An Easy Path To Convex Analysis And Applications


An Easy Path To Convex Analysis And Applications
DOWNLOAD
Author : Boris S. Mordukhovich
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

An Easy Path To Convex Analysis And Applications written by Boris S. Mordukhovich and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Mathematics categories.


Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical foundation for convex optimization, having deep knowledge of convex analysis helps students and researchers apply its tools more effectively. The main goal of this book is to provide an easy access to the most fundamental parts of convex analysis and its applications to optimization. Modern techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and build the theory of generalized differentiation for convex functions and sets in finite dimensions. We also present new applications of convex analysis to location problems in connection with many interesting geometric problems such as the Fermat-Torricelli problem, the Heron problem, the Sylvester problem, and their generalizations. Of course, we do not expect to touch every aspect of convex analysis, but the book consists of sufficient material for a first course on this subject. It can also serve as supplemental reading material for a course on convex optimization and applications.



An Easy Path To Convex Analysis And Applications


An Easy Path To Convex Analysis And Applications
DOWNLOAD
Author : Boris Mordukhovich
language : en
Publisher: Springer Nature
Release Date : 2023-06-16

An Easy Path To Convex Analysis And Applications written by Boris Mordukhovich and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-16 with Mathematics categories.


This book examines the most fundamental parts of convex analysis and its applications to optimization and location problems. Accessible techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and to build a theory of generalized differentiation for convex functions and sets in finite dimensions. The book serves as a bridge for the readers who have just started using convex analysis to reach deeper topics in the field. Detailed proofs are presented for most of the results in the book and also included are many figures and exercises for better understanding the material. Applications provided include both the classical topics of convex optimization and important problems of modern convex optimization, convex geometry, and facility location.



A Simple Path To Convex Analysis And Applications


A Simple Path To Convex Analysis And Applications
DOWNLOAD
Author : Boris S. Mordukhovich
language : en
Publisher:
Release Date : 2014

A Simple Path To Convex Analysis And Applications written by Boris S. Mordukhovich and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with categories.


Annotation Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical foundation for convex optimization, having deep knowledge of convex analysis helps students and researchers apply its tools more effectively. The main goal of this book is to provide an easy access to the most fundamental parts of convex analysis and its applications to optimization. Modern techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and build the theory of generalized differentiation for convex functions and sets in finite dimensions. We also present new applications of convex analysis to location problems in connection with many interesting geometric problems such as the Fermat-Torricelli problem, the Heron problem, the Sylvester problem, and their generalizations. Of course, we do not expect to touch every aspect of convex analysis, but the book consists of sufficient material for a first course on this subject. It can also serve as supplemental reading material for a course on convex optimization and applications.



Convex Optimization With Computational Errors


Convex Optimization With Computational Errors
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer Nature
Release Date : 2020-01-31

Convex Optimization With Computational Errors written by Alexander J. Zaslavski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Mathematics categories.


The book is devoted to the study of approximate solutions of optimization problems in the presence of computational errors. It contains a number of results on the convergence behavior of algorithms in a Hilbert space, which are known as important tools for solving optimization problems. The research presented in the book is the continuation and the further development of the author's (c) 2016 book Numerical Optimization with Computational Errors, Springer 2016. Both books study the algorithms taking into account computational errors which are always present in practice. The main goal is, for a known computational error, to find out what an approximate solution can be obtained and how many iterates one needs for this. The main difference between this new book and the 2016 book is that in this present book the discussion takes into consideration the fact that for every algorithm, its iteration consists of several steps and that computational errors for different steps are generally, different. This fact, which was not taken into account in the previous book, is indeed important in practice. For example, the subgradient projection algorithm consists of two steps. The first step is a calculation of a subgradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these two steps there is a computational error and these two computational errors are different in general. It may happen that the feasible set is simple and the objective function is complicated. As a result, the computational error, made when one calculates the projection, is essentially smaller than the computational error of the calculation of the subgradient. Clearly, an opposite case is possible too. Another feature of this book is a study of a number of important algorithms which appeared recently in the literature and which are not discussed in the previous book. This monograph contains 12 chapters. Chapter 1 is an introduction. In Chapter 2 we study the subgradient projection algorithm for minimization of convex and nonsmooth functions. We generalize the results of [NOCE] and establish results which has no prototype in [NOCE]. In Chapter 3 we analyze the mirror descent algorithm for minimization of convex and nonsmooth functions, under the presence of computational errors. For this algorithm each iteration consists of two steps. The first step is a calculation of a subgradient of the objective function while in the second one we solve an auxiliary minimization problem on the set of feasible points. In each of these two steps there is a computational error. We generalize the results of [NOCE] and establish results which has no prototype in [NOCE]. In Chapter 4 we analyze the projected gradient algorithm with a smooth objective function under the presence of computational errors. In Chapter 5 we consider an algorithm, which is an extension of the projection gradient algorithm used for solving linear inverse problems arising in signal/image processing. In Chapter 6 we study continuous subgradient method and continuous subgradient projection algorithm for minimization of convex nonsmooth functions and for computing the saddle points of convex-concave functions, under the presence of computational errors. All the results of this chapter has no prototype in [NOCE]. In Chapters 7-12 we analyze several algorithms under the presence of computational errors which were not considered in [NOCE]. Again, each step of an iteration has a computational errors and we take into account that these errors are, in general, different. An optimization problems with a composite objective function is studied in Chapter 7. A zero-sum game with two-players is considered in Chapter 8. A predicted decrease approximation-based method is used in Chapter 9 for constrained convex optimization. Chapter 10 is devoted to minimization of quasiconvex functions. Minimization of sharp weakly convex functions is discussed in Chapter 11. Chapter 12 is devoted to a generalized projected subgradient method for minimization of a convex function over a set which is not necessarily convex. The book is of interest for researchers and engineers working in optimization. It also can be useful in preparation courses for graduate students. The main feature of the book which appeals specifically to this audience is the study of the influence of computational errors for several important optimization algorithms. The book is of interest for experts in applications of optimization to engineering and economics.



Convex And Set Valued Analysis


Convex And Set Valued Analysis
DOWNLOAD
Author : Aram V. Arutyunov
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2016-12-05

Convex And Set Valued Analysis written by Aram V. Arutyunov and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-05 with Mathematics categories.


This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index



Variational Analysis And Applications


Variational Analysis And Applications
DOWNLOAD
Author : Boris S. Mordukhovich
language : en
Publisher: Springer
Release Date : 2018-08-02

Variational Analysis And Applications written by Boris S. Mordukhovich and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-02 with Mathematics categories.


Building on fundamental results in variational analysis, this monograph presents new and recent developments in the field as well as selected applications. Accessible to a broad spectrum of potential readers, the main material is presented in finite-dimensional spaces. Infinite-dimensional developments are discussed at the end of each chapter with comprehensive commentaries which emphasize the essence of major results, track the genesis of ideas, provide historical comments, and illuminate challenging open questions and directions for future research. The first half of the book (Chapters 1–6) gives a systematic exposition of key concepts and facts, containing basic material as well as some recent and new developments. These first chapters are particularly accessible to masters/doctoral students taking courses in modern optimization, variational analysis, applied analysis, variational inequalities, and variational methods. The reader’s development of skills will be facilitated as they work through each, or a portion of, the multitude of exercises of varying levels. Additionally, the reader may find hints and references to more difficult exercises and are encouraged to receive further inspiration from the gems in chapter commentaries. Chapters 7–10 focus on recent results and applications of variational analysis to advanced problems in modern optimization theory, including its hierarchical and multiobjective aspects, as well as microeconomics, and related areas. It will be of great use to researchers and professionals in applied and behavioral sciences and engineering.



An Introduction To Convexity Optimization And Algorithms


An Introduction To Convexity Optimization And Algorithms
DOWNLOAD
Author : Heinz H. Bauschke
language : en
Publisher: SIAM
Release Date : 2023-12-20

An Introduction To Convexity Optimization And Algorithms written by Heinz H. Bauschke and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-20 with Mathematics categories.


This concise, self-contained volume introduces convex analysis and optimization algorithms, with an emphasis on bridging the two areas. It explores cutting-edge algorithms—such as the proximal gradient, Douglas–Rachford, Peaceman–Rachford, and FISTA—that have applications in machine learning, signal processing, image reconstruction, and other fields. An Introduction to Convexity, Optimization, and Algorithms contains algorithms illustrated by Julia examples and more than 200 exercises that enhance the reader’s understanding of the topic. Clear explanations and step-by-step algorithmic descriptions facilitate self-study for individuals looking to enhance their expertise in convex analysis and optimization. Designed for courses in convex analysis, numerical optimization, and related subjects, this volume is intended for undergraduate and graduate students in mathematics, computer science, and engineering. Its concise length makes it ideal for a one-semester course. Researchers and professionals in applied areas, such as data science and machine learning, will find insights relevant to their work.



Optimization In Banach Spaces


Optimization In Banach Spaces
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer Nature
Release Date : 2022-09-29

Optimization In Banach Spaces written by Alexander J. Zaslavski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-29 with Mathematics categories.


The book is devoted to the study of constrained minimization problems on closed and convex sets in Banach spaces with a Frechet differentiable objective function. Such problems are well studied in a finite-dimensional space and in an infinite-dimensional Hilbert space. When the space is Hilbert there are many algorithms for solving optimization problems including the gradient projection algorithm which is one of the most important tools in the optimization theory, nonlinear analysis and their applications. An optimization problem is described by an objective function and a set of feasible points. For the gradient projection algorithm each iteration consists of two steps. The first step is a calculation of a gradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these two steps there is a computational error. In our recent research we show that the gradient projection algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. It should be mentioned that the properties of a Hilbert space play an important role. When we consider an optimization problem in a general Banach space the situation becomes more difficult and less understood. On the other hand such problems arise in the approximation theory. The book is of interest for mathematicians working in optimization. It also can be useful in preparation courses for graduate students. The main feature of the book which appeals specifically to this audience is the study of algorithms for convex and nonconvex minimization problems in a general Banach space. The book is of interest for experts in applications of optimization to the approximation theory. In this book the goal is to obtain a good approximate solution of the constrained optimization problem in a general Banach space under the presence of computational errors. It is shown that the algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. The book consists of four chapters. In the first we discuss several algorithms which are studied in the book and prove a convergence result for an unconstrained problem which is a prototype of our results for the constrained problem. In Chapter 2 we analyze convex optimization problems. Nonconvex optimization problems are studied in Chapter 3. In Chapter 4 we study continuous algorithms for minimization problems under the presence of computational errors. The algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. The book consists of four chapters. In the first we discuss several algorithms which are studied in the book and prove a convergence result for an unconstrained problem which is a prototype of our results for the constrained problem. In Chapter 2 we analyze convex optimization problems. Nonconvex optimization problems are studied in Chapter 3. In Chapter 4 we study continuous algorithms for minimization problems under the presence of computational errors.



Convex Analysis And Monotone Operator Theory In Hilbert Spaces


Convex Analysis And Monotone Operator Theory In Hilbert Spaces
DOWNLOAD
Author : Heinz H. Bauschke
language : en
Publisher: Springer
Release Date : 2017-02-28

Convex Analysis And Monotone Operator Theory In Hilbert Spaces written by Heinz H. Bauschke and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-28 with Mathematics categories.


This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.



Multi Composed Programming With Applications To Facility Location


Multi Composed Programming With Applications To Facility Location
DOWNLOAD
Author : Oleg Wilfer
language : en
Publisher: Springer Nature
Release Date : 2020-05-27

Multi Composed Programming With Applications To Facility Location written by Oleg Wilfer and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-27 with Mathematics categories.


Oleg Wilfer presents a new conjugate duality concept for geometric and cone constrained optimization problems whose objective functions are a composition of finitely many functions. As an application, the author derives results for single minmax location problems formulated by means of extended perturbed minimal time functions as well as for multi-facility minmax location problems defined by gauges. In addition, he provides formulae of projections onto the epigraphs of gauges to solve these kinds of location problems numerically by using parallel splitting algorithms. Numerical comparisons of recent methods show the excellent performance of the proposed solving technique. ​About the Author: Dr. Oleg Wilfer received his PhD at the Faculty of Mathematics of Chemnitz University of Technology, Germany. He is currently working as a development engineer in the automotive industry.