[PDF] Adaptive Finite Element Methods For Optimization In Partial Differential Equations - eBooks Review

Adaptive Finite Element Methods For Optimization In Partial Differential Equations


Adaptive Finite Element Methods For Optimization In Partial Differential Equations
DOWNLOAD

Download Adaptive Finite Element Methods For Optimization In Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Adaptive Finite Element Methods For Optimization In Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Adaptive Finite Element Methods For Optimization In Partial Differential Equations


Adaptive Finite Element Methods For Optimization In Partial Differential Equations
DOWNLOAD
Author : Hartmut Kapp
language : en
Publisher:
Release Date : 2000

Adaptive Finite Element Methods For Optimization In Partial Differential Equations written by Hartmut Kapp and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with categories.




Adaptive Finite Element Methods For Differential Equations


Adaptive Finite Element Methods For Differential Equations
DOWNLOAD
Author : Wolfgang Bangerth
language : en
Publisher: Birkhäuser
Release Date : 2013-11-11

Adaptive Finite Element Methods For Differential Equations written by Wolfgang Bangerth and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.


These Lecture Notes have been compiled from the material presented by the second author in a lecture series ('Nachdiplomvorlesung') at the Department of Mathematics of the ETH Zurich during the summer term 2002. Concepts of 'self adaptivity' in the numerical solution of differential equations are discussed with emphasis on Galerkin finite element methods. The key issues are a posteriori er ror estimation and automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method (or shortly D WR method) for goal-oriented error estimation is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. 'Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. The basics of the DWR method and various of its applications are described in the following survey articles: R. Rannacher [114], Error control in finite element computations. In: Proc. of Summer School Error Control and Adaptivity in Scientific Computing (H. Bulgak and C. Zenger, eds), pp. 247-278. Kluwer Academic Publishers, 1998. M. Braack and R. Rannacher [42], Adaptive finite element methods for low Mach-number flows with chemical reactions.



Automated Solution Of Differential Equations By The Finite Element Method


Automated Solution Of Differential Equations By The Finite Element Method
DOWNLOAD
Author : Anders Logg
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-24

Automated Solution Of Differential Equations By The Finite Element Method written by Anders Logg and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-24 with Computers categories.


This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.



Adaptive Finite Element Methods For Optimization In Partial Differential Equations


Adaptive Finite Element Methods For Optimization In Partial Differential Equations
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2000

Adaptive Finite Element Methods For Optimization In Partial Differential Equations written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with categories.


A new approach to error control and mesh adaptivity is described for the discretization of optimal control problems governed by (elliptic) partial differential equations. The Lagrangian formalism yields the first-order necessary optimality condition in form of an indefinite boundary value problem which is approximated by an adaptive Galerkin finite element method. The mesh design in the resulting reduced models is controlled by residual-based a posteriori error estimates. These are derived by duality arguments employing the cost functional of the optimization problem for controlling the discretization error. In this case, the computed state and co-state variables can be used as sensitivity factors multiplying the local cell-residuals in the error estimators. This results in a generic and efficient algorithm for mesh adaptation within the optimization process. Applications of the developed method are boundary control problem models governed by Ginzburg-Landau equations (superconductivity in semi-conductors), by Navier-Stokes equations, and by the Boussinesq viscosity model (flow with temperature transport for zero gravitation). Computations with more than 2 million unknowns were performed.



Constrained Optimization And Optimal Control For Partial Differential Equations


Constrained Optimization And Optimal Control For Partial Differential Equations
DOWNLOAD
Author : Günter Leugering
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-03

Constrained Optimization And Optimal Control For Partial Differential Equations written by Günter Leugering and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-03 with Mathematics categories.


This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.



Optimization With Pde Constraints


Optimization With Pde Constraints
DOWNLOAD
Author : Ronald Hoppe
language : en
Publisher: Springer
Release Date : 2014-09-11

Optimization With Pde Constraints written by Ronald Hoppe and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-11 with Computers categories.


This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).



Optimization And Control For Partial Differential Equations


Optimization And Control For Partial Differential Equations
DOWNLOAD
Author : Roland Herzog
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2022-03-07

Optimization And Control For Partial Differential Equations written by Roland Herzog and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-07 with Mathematics categories.


This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.



Trends In Pde Constrained Optimization


Trends In Pde Constrained Optimization
DOWNLOAD
Author : Günter Leugering
language : en
Publisher: Springer
Release Date : 2014-12-22

Trends In Pde Constrained Optimization written by Günter Leugering and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-22 with Mathematics categories.


Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics. The book is divided into five sections on “Constrained Optimization, Identification and Control”, “Shape and Topology Optimization”, “Adaptivity and Model Reduction”, “Discretization: Concepts and Analysis” and “Applications”. Peer-reviewed research articles present the most recent results in the field of PDE constrained optimization and control problems. Informative survey articles give an overview of topics that set sustainable trends for future research. This makes this special volume interesting not only for mathematicians, but also for engineers and for natural and medical scientists working on processes that can be modeled by PDEs.



Numerical Solution Of Partial Differential Equations By The Finite Element Method


Numerical Solution Of Partial Differential Equations By The Finite Element Method
DOWNLOAD
Author : Claes Johnson
language : en
Publisher: Courier Corporation
Release Date : 2012-05-23

Numerical Solution Of Partial Differential Equations By The Finite Element Method written by Claes Johnson and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-23 with Mathematics categories.


An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.



Real Time Pde Constrained Optimization


Real Time Pde Constrained Optimization
DOWNLOAD
Author : Lorenz T. Biegler
language : en
Publisher: SIAM
Release Date : 2007-01-01

Real Time Pde Constrained Optimization written by Lorenz T. Biegler and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.


Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.