Additive Logistic Regression

DOWNLOAD
Download Additive Logistic Regression PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Additive Logistic Regression book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Additive Logistic Regression
DOWNLOAD
Author : Jerome H. Friedman
language : en
Publisher:
Release Date : 1998
Additive Logistic Regression written by Jerome H. Friedman and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Regression analysis categories.
Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020
Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Generalized Additive Models
DOWNLOAD
Author : T.J. Hastie
language : en
Publisher: Routledge
Release Date : 2017-10-19
Generalized Additive Models written by T.J. Hastie and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-19 with Mathematics categories.
This book describes an array of power tools for data analysis that are based on nonparametric regression and smoothing techniques. These methods relax the linear assumption of many standard models and allow analysts to uncover structure in the data that might otherwise have been missed. While McCullagh and Nelder's Generalized Linear Models shows how to extend the usual linear methodology to cover analysis of a range of data types, Generalized Additive Models enhances this methodology even further by incorporating the flexibility of nonparametric regression. Clear prose, exercises in each chapter, and case studies enhance this popular text.
The Elements Of Statistical Learning
DOWNLOAD
Author : Trevor Hastie
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
The Elements Of Statistical Learning written by Trevor Hastie and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates.
Modern Regression Techniques Using R
DOWNLOAD
Author : Daniel B Wright
language : en
Publisher: SAGE
Release Date : 2009-02-19
Modern Regression Techniques Using R written by Daniel B Wright and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-19 with Mathematics categories.
Statistics is the language of modern empirical social and behavioural science and the varieties of regression form the basis of this language. Statistical and computing advances have led to new and exciting regressions that have become the necessary tools for any researcher in these fields. In a way that is refreshingly engaging and readable, Wright and London describe the most useful of these techniques and provide step-by-step instructions, using the freeware R, to analyze datasets that can be located on the books′ webpage: www.sagepub.co.uk/wrightandlondon. Techniques covered in this book include multilevel modeling, ANOVA and ANCOVA, path analysis, mediation and moderation, logistic regression (generalized linear models), generalized additive models, and robust methods. These are all tested out using a range of real research examples conducted by the authors in every chapter. Given the wide coverage of techniques, this book will be essential reading for any advanced undergraduate and graduate student (particularly in psychology) and for more experienced researchers wanting to learn how to apply some of the more recent statistical techniques to their datasets. The Authors are donating all royalties from the book to the American Partnership for Eosinophilic Disorders.
Logistic Regression
DOWNLOAD
Author : Scott W. Menard
language : en
Publisher: SAGE
Release Date : 2010
Logistic Regression written by Scott W. Menard and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.
Logistic Regression is designed for readers who have a background in statistics at least up to multiple linear regression, who want to analyze dichotomous, nominal, and ordinal dependent variables cross-sectionally and longitudinally.
Generalized Additive Models
DOWNLOAD
Author : Simon N. Wood
language : en
Publisher: CRC Press
Release Date : 2006-02-27
Generalized Additive Models written by Simon N. Wood and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-27 with Mathematics categories.
Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also e
The Sage Handbook Of Regression Analysis And Causal Inference
DOWNLOAD
Author : Henning Best
language : en
Publisher: SAGE
Release Date : 2013-12-20
The Sage Handbook Of Regression Analysis And Causal Inference written by Henning Best and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-20 with Social Science categories.
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
Exploring Binary Outcome Data By Logistic Regression Model And Generalized Additive Logistic Model
DOWNLOAD
Author : Hiba Abdalla Ibrahim
language : en
Publisher:
Release Date : 2005
Exploring Binary Outcome Data By Logistic Regression Model And Generalized Additive Logistic Model written by Hiba Abdalla Ibrahim and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Linear models (Statistics) categories.