Advanced Data Mining Machine Learning And Big Data With Matlab

DOWNLOAD
Download Advanced Data Mining Machine Learning And Big Data With Matlab PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Data Mining Machine Learning And Big Data With Matlab book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Advanced Data Mining Machine Learning And Big Data With Matlab
DOWNLOAD
Author : H. Mendel
language : en
Publisher:
Release Date : 2017-10-30
Advanced Data Mining Machine Learning And Big Data With Matlab written by H. Mendel and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-30 with categories.
The availability of large volumes of data and the use of computer tools has transformed the research and anlysis of data orienting it towards certain specialized techniques included under the name of Data Mining. Data Mining can be defined as a process of discovering new and significant relationships, patterns and trends when examining and processing large amounts of data organized according to Big Data techniques. Data Mining methodologies include SAS Institute's SEMMA methodology and IBM's CRISP-DM methodology. MATLAB has tools to work with the different techniques of Data Mining.On the other hand, Machine learning teaches computers to do what comes naturally to humans: learn from experience. Machine learning algorithms use computational methods to "learn" information directly from data without relying on a predetermined equation as a model. The algorithms adaptively improve their performance as the number of samples available for learning increases. Machine learning uses two types of techniques: supervised learning, which trains a model on known input and output data so that it can predict future outputs, and unsupervised learning, which finds hidden patterns or intrinsic structures in input data. The aim of supervised machine learning is to build a model that makes predictions based on evidence in the presence of uncertainty. A supervised learning algorithm takes a known set of input data and known responses to the data (output) and trains a model to generate reasonable predictions for the response to new data. Supervised learning uses classification and regression techniques to develop predictive models. * Classification techniques predict categorical responses, for example, whether an email is genuine or spam, or whether a tumor is cancerous or benign. Classification models classify input data into categories. Typical applications include medical imaging, image and speech recognition, and credit scoring. * Regression techniques predict continuous responses, for example, changes in temperature or fluctuations in power demand. Typical applications include electricity load forecasting and algorithmic trading. Unsupervised learning finds hidden patterns or intrinsic structures in data. It is used to draw inferences from datasets consisting of input data without labeled responses. Clustering is the most common unsupervised learning technique. It is used for exploratory data analysis to find hidden patterns or groupings in data. Applications for clustering include gene sequence analysis, market research, and object recognition. The techniques of data mining and machine learning may be considered to be closely related. Both concepts are very similar. Supervised machine learning techniques can be considered equivalent to the techniques of predictive modeling of data mining, and unsupervised machine learning techniques can be considered equivalent to classification techniques in data miningBig data analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. A key tools in big data analytics are the neural networks tall arrays and paralell computing. MATLAB Neural Network Toolbox provides algorithms, pretrained models, and apps to create, train, visualize, and simulate both shallow and deep neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. This book develops several chapters that include advanced Data Mining techniques (Neural Networks, Segmentation and advanced Modelization techniques). All chapters are supplemented by examples that clarify the techniques. This book also develops supervised learning and unsupervised learning techniques across examples using MATLAB. As well, this book develops big data tecniques like tall arrays and paralell computing.
Data Science And Big Data Computing
DOWNLOAD
Author : Zaigham Mahmood
language : en
Publisher: Springer
Release Date : 2016-07-05
Data Science And Big Data Computing written by Zaigham Mahmood and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-05 with Business & Economics categories.
This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.
Advanced Data Mining And Applications
DOWNLOAD
Author : Gao Cong
language : en
Publisher: Springer
Release Date : 2017-10-30
Advanced Data Mining And Applications written by Gao Cong and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-30 with Computers categories.
This book constitutes the refereed proceedings of the 13th International Conference on Advanced Data Mining and Applications, ADMA 2017, held in Singapore in November 2017. The 20 full and 38 short papers presented in this volume were carefully reviewed and selected from 118 submissions. The papers were organized in topical sections named: database and distributed machine learning; recommender system; social network and social media; machine learning; classification and clustering methods; behavior modeling and user profiling; bioinformatics and medical data analysis; spatio-temporal data; natural language processing and text mining; data mining applications; applications; and demos.
Data Science Quick Reference Manual Advanced Machine Learning And Deployment
DOWNLOAD
Author : Mario A. B. Capurso
language : en
Publisher: Mario Capurso
Release Date :
Data Science Quick Reference Manual Advanced Machine Learning And Deployment written by Mario A. B. Capurso and has been published by Mario Capurso this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. Part in a series of texts, it first summarizes the standard CRISP DM working methodology used in this work and in Data Science projects. As this text uses Orange for the application aspects, it describes its installation and widgets. The data modeling phase is considered from the perspective of machine learning by summarizing machine learning types, model types, problem types, and algorithm types. Advanced aspects associated with modeling are described such as loss and optimization functions such as gradient descent, techniques to analyze model performance such as Bootstrapping and Cross Validation. Deployment scenarios and the most common platforms are analyzed, with application examples. Mechanisms are proposed to automate machine learning and to support the interpretability of models and results such as Partial Dependence Plot, Permuted Feature Importance and others. The exercises are described with Orange and Python using the Keras/Tensorflow library. The text is accompanied by supporting material and it is possible to download the examples and the test data.
Advanced Data Mining And Applications
DOWNLOAD
Author : Longbing Cao
language : en
Publisher: Springer
Release Date : 2010-11-18
Advanced Data Mining And Applications written by Longbing Cao and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-18 with Computers categories.
With the ever-growing power of generating, transmitting, and collecting huge amounts of data, information overloadis nowan imminent problemto mankind. The overwhelming demand for information processing is not just about a better understanding of data, but also a better usage of data in a timely fashion. Data mining, or knowledge discovery from databases, is proposed to gain insight into aspects ofdata and to help peoplemakeinformed,sensible,and better decisions. At present, growing attention has been paid to the study, development, and application of data mining. As a result there is an urgent need for sophisticated techniques and toolsthat can handle new ?elds of data mining, e. g. , spatialdata mining, biomedical data mining, and mining on high-speed and time-variant data streams. The knowledge of data mining should also be expanded to new applications. The 6th International Conference on Advanced Data Mining and Appli- tions(ADMA2010)aimedtobringtogethertheexpertsondataminingthrou- out the world. It provided a leading international forum for the dissemination of original research results in advanced data mining techniques, applications, al- rithms, software and systems, and di?erent applied disciplines. The conference attracted 361 online submissions from 34 di?erent countries and areas. All full papers were peer reviewed by at least three members of the Program Comm- tee composed of international experts in data mining ?elds. A total number of 118 papers were accepted for the conference. Amongst them, 63 papers were selected as regular papers and 55 papers were selected as short papers.
Advanced Deep Learning Applications In Big Data Analytics
DOWNLOAD
Author : Bouarara, Hadj Ahmed
language : en
Publisher: IGI Global
Release Date : 2020-10-16
Advanced Deep Learning Applications In Big Data Analytics written by Bouarara, Hadj Ahmed and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-16 with Computers categories.
Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.
Smart Computing Paradigms Advanced Data Mining And Analytics
DOWNLOAD
Author : Milan Simic
language : en
Publisher: Springer Nature
Release Date : 2025-05-02
Smart Computing Paradigms Advanced Data Mining And Analytics written by Milan Simic and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-02 with Computers categories.
This book presents best-selected papers presented at 6th International Conference on Smart Computing and Informatics (SCI 2024), held at Department of Computer Science and Engineering, Anil Neerukonda Institute of Technology & Sciences (ANITS), Visakhapatnam, India, during 19 – 20 April 2024. It presents advanced and multidisciplinary research toward the design of smart computing and informatics. The theme is on a broader front and focuses on various innovation paradigms in system knowledge, intelligence and sustainability that may be applied to provide realistic solutions to varied problems in society, environment and industries. The scope is also extended toward the deployment of emerging computational and knowledge transfer approaches, optimizing solutions in various disciplines of science, technology and healthcare. The work is published in three volumes.
Advanced Data Mining And Applications
DOWNLOAD
Author : Hiroshi Motoda
language : en
Publisher: Springer
Release Date : 2013-12-16
Advanced Data Mining And Applications written by Hiroshi Motoda and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-16 with Computers categories.
The two-volume set LNAI 8346 and 8347 constitutes the thoroughly refereed proceedings of the 9th International Conference on Advanced Data Mining and Applications, ADMA 2013, held in Hangzhou, China, in December 2013. The 32 regular papers and 64 short papers presented in these two volumes were carefully reviewed and selected from 222 submissions. The papers included in these two volumes cover the following topics: opinion mining, behavior mining, data stream mining, sequential data mining, web mining, image mining, text mining, social network mining, classification, clustering, association rule mining, pattern mining, regression, predication, feature extraction, identification, privacy preservation, applications, and machine learning.
Advanced Machine Learning Using Python Programming
DOWNLOAD
Author : SOHARA BANU A R
language : en
Publisher: MileStone Research Publications
Release Date : 2023-07-13
Advanced Machine Learning Using Python Programming written by SOHARA BANU A R and has been published by MileStone Research Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-13 with Computers categories.
THE AUTHOR(S) AND PUBLISHER OF THIS BOOK HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK. THESE EFFORTS INCLUDE THE DEVELOPMENT, RESEARCH ANDTESTING OF THE THEORIES AND PROGRAMS TO DETERMINE THEIR EFFECTIVENESS. THE AUTHORS AND PUBLISHER MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIEDWITH REGARD TO THESE PROGRAMS OR THE DOCUMENTATION CONTAINED IN THIS BOOK. THE AUTHORS AND PUBLISHER SHALL NOT BE LIABLE IN ANY EVENT FORINCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH, OR ARISING OUT OF, THE FURNISHING, PERFORMANCE, OR USE OF THESE PROGRAMS. COPYRIGHTS © 2023 BY MILESTONE RESEARCH PUBLICATIONS, INC. THIS EDITION IS PUBLISHED BY ARRANGEMENT WITH MILESTONE RESEARCH FOUNDATION, INC. THIS BOOK IS SOLD SUBJECT TO THE CONDITION THAT IT SHALL NOT, BY WAY OF TRADE OR OTHERWISE, BE LENT, RESOLD, HIRED OUT, OR OTHERWISE CIRCULATED WITHOUTTHE PUBLISHER'S PRIOR WRITTEN CONSENT IN ANY FORM OF BINDING OR COVER OTHER THAN THAT IN WHICH IT IS PUBLISHED AND WITHOUT A SIMILAR CONDITIONINCLUDING THIS CONDITION BEING IMPOSED ON THE SUBSEQUENT PURCHASER AND WITHOUT LIMITING THE RIGHTS UNDER COPYRIGHT RESERVED ABOVE, NO PART OF THISPUBLICATION MAY BE REPRODUCED, STORED IN OR INTRODUCED INTO RETRIEVAL SYSTEM, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS (ELECTRONIC, MECHANICAL,PHOTOCOPYING, RECORDING AND OTHERWISE) WITHOUT THE PRIOR WRITTEN PERMISSION OF BOTH THE COPYRIGHT OWNER AND THE ABOVE MENTIONED PUBLISHER OFTHIS BOOK.
Dynamic And Advanced Data Mining For Progressing Technological Development Innovations And Systemic Approaches
DOWNLOAD
Author : Ali, A B M Shawkat
language : en
Publisher: IGI Global
Release Date : 2009-11-30
Dynamic And Advanced Data Mining For Progressing Technological Development Innovations And Systemic Approaches written by Ali, A B M Shawkat and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-30 with Medical categories.
"This book discusses advances in modern data mining research in today's rapidly growing global and technological environment"--Provided by publisher.