Advanced Mathematical Applications In Data Science

DOWNLOAD
Download Advanced Mathematical Applications In Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Mathematical Applications In Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Advanced Mathematical Applications In Data Science
DOWNLOAD
Author : Kirti Verma
language : en
Publisher: Bentham Science Publishers
Release Date : 2023-08-24
Advanced Mathematical Applications In Data Science written by Kirti Verma and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-24 with categories.
Advanced Mathematical Applications in Data Science comprehensively explores the crucial role mathematics plays in the field of data science. Each chapter is contributed by scientists, researchers, and academicians. The 13 chapters cover a range of mathematical concepts utilized in data science, enabling readers to understand the intricate connection between mathematics and data analysis. The book covers diverse topics, including, machine learning models, the Kalman filter, data modeling, artificial neural networks, clustering techniques, and more, showcasing the application of advanced mathematical tools for effective data processing and analysis. With a strong emphasis on real-world applications, the book offers a deeper understanding of the foundational principles behind data analysis and its numerous interdisciplinary applications. This reference is an invaluable resource for graduate students, researchers, academicians, and learners pursuing a research career in mathematical computing or completing advanced data science courses. Key Features: -Comprehensive coverage of advanced mathematical concepts and techniques in data science. -Contributions from established scientists, researchers, and academicians. -Real-world case studies and practical applications of mathematical methods. -Focus on diverse areas, such as image classification, carbon emission assessment, customer churn prediction, and healthcare data analysis. -In-depth exploration of data science's connection with mathematics, computer science, and artificial intelligence. -Scholarly references for each chapter. -Suitable for readers with high school-level mathematical knowledge, making it accessible to a broad audience in academia and industry.
Advanced Mathematical Applications In Data Science
DOWNLOAD
Author : Biswadip Basu Mallik
language : en
Publisher: Bentham Science Publishers
Release Date : 2023-08-24
Advanced Mathematical Applications In Data Science written by Biswadip Basu Mallik and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-24 with Computers categories.
Advanced Mathematical Applications in Data Science comprehensively explores the crucial role mathematics plays in the field of data science. Each chapter is contributed by scientists, researchers, and academicians. The 13 chapters cover a range of mathematical concepts utilized in data science, enabling readers to understand the intricate connection between mathematics and data analysis. The book covers diverse topics, including, machine learning models, the Kalman filter, data modeling, artificial neural networks, clustering techniques, and more, showcasing the application of advanced mathematical tools for effective data processing and analysis. With a strong emphasis on real-world applications, the book offers a deeper understanding of the foundational principles behind data analysis and its numerous interdisciplinary applications. This reference is an invaluable resource for graduate students, researchers, academicians, and learners pursuing a research career in mathematical computing or completing advanced data science courses. Key Features: Comprehensive coverage of advanced mathematical concepts and techniques in data science Contributions from established scientists, researchers, and academicians Real-world case studies and practical applications of mathematical methods Focus on diverse areas, such as image classification, carbon emission assessment, customer churn prediction, and healthcare data analysis In-depth exploration of data science's connection with mathematics, computer science, and artificial intelligence Scholarly references for each chapter Suitable for readers with high school-level mathematical knowledge, making it accessible to a broad audience in academia and industry.
Mathematical Problems In Data Science
DOWNLOAD
Author : Li M. Chen
language : en
Publisher: Springer
Release Date : 2015-12-15
Mathematical Problems In Data Science written by Li M. Chen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-15 with Computers categories.
This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of big data, geometric data structures, topological data processing, and various learning methods. For unsolved problems such as incomplete data relation and reconstruction, the book includes possible solutions and both statistical and computational methods for data analysis. Initial chapters focus on exploring the properties of incomplete data sets and partial-connectedness among data points or data sets. Discussions also cover the completion problem of Netflix matrix; machine learning method on massive data sets; image segmentation and video search. This book introduces software tools for data science and Big Data such MapReduce, Hadoop, and Spark. This book contains three parts. The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematical image and video processing, topological data analysis, and statistical methods. The final section provides case studies on special topics in variational learning, manifold learning, business and financial data rec overy, geometric search, and computing models. Mathematical Problems in Data Science is a valuable resource for researchers and professionals working in data science, information systems and networks. Advanced-level students studying computer science, electrical engineering and mathematics will also find the content helpful.
Mathematics For Machine Learning
DOWNLOAD
Author : Marc Peter Deisenroth
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-23
Mathematics For Machine Learning written by Marc Peter Deisenroth and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-23 with Computers categories.
Distills key concepts from linear algebra, geometry, matrices, calculus, optimization, probability and statistics that are used in machine learning.
Choosing Chinese Universities
DOWNLOAD
Author : Alice Y.C. Te
language : en
Publisher: Routledge
Release Date : 2022-10-07
Choosing Chinese Universities written by Alice Y.C. Te and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-07 with Education categories.
This book unpacks the complex dynamics of Hong Kong students’ choice in pursuing undergraduate education at the universities of Mainland China. Drawing on an empirical study based on interviews with 51 students, this book investigates how macro political/economic factors, institutional influences, parental influence, and students’ personal motivations have shaped students’ eventual choice of university. Building on Perna’s integrated model of college choice and Lee’s push-pull mobility model, this book conceptualizes that students’ border crossing from Hong Kong to Mainland China for higher education is a trans-contextualized negotiated choice under the "One Country, Two Systems" principle. The findings reveal that during the decision-making process, influencing factors have conditioned four archetypes of student choice: Pragmatists, Achievers, Averages, and Underachievers. The book closes by proposing an enhanced integrated model of college choice that encompasses both rational motives and sociological factors, and examines the theoretical significance and practical implications of the qualitative study. With its focus on student choice and experiences of studying in China, this book’s research and policy findings will interest researchers, university administrators, school principals, and teachers.
Advanced Mathematical Methods In Science And Engineering
DOWNLOAD
Author : S.I. Hayek
language : en
Publisher: CRC Press
Release Date : 2010-06-22
Advanced Mathematical Methods In Science And Engineering written by S.I. Hayek and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-22 with Mathematics categories.
Classroom-tested, Advanced Mathematical Methods in Science and Engineering, Second Edition presents methods of applied mathematics that are particularly suited to address physical problems in science and engineering. Numerous examples illustrate the various methods of solution and answers to the end-of-chapter problems are included at the back of t
Advanced Data Science And Analytics With Python
DOWNLOAD
Author : Jesus Rogel-Salazar
language : en
Publisher: CRC Press
Release Date : 2020-05-05
Advanced Data Science And Analytics With Python written by Jesus Rogel-Salazar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-05 with Business & Economics categories.
Advanced Data Science and Analytics with Python enables data scientists to continue developing their skills and apply them in business as well as academic settings. The subjects discussed in this book are complementary and a follow-up to the topics discussed in Data Science and Analytics with Python. The aim is to cover important advanced areas in data science using tools developed in Python such as SciKit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX and others. The model development is supported by the use of frameworks such as Keras, TensorFlow and Core ML, as well as Swift for the development of iOS and MacOS applications. Features: Targets readers with a background in programming, who are interested in the tools used in data analytics and data science Uses Python throughout Presents tools, alongside solved examples, with steps that the reader can easily reproduce and adapt to their needs Focuses on the practical use of the tools rather than on lengthy explanations Provides the reader with the opportunity to use the book whenever needed rather than following a sequential path The book can be read independently from the previous volume and each of the chapters in this volume is sufficiently independent from the others, providing flexibility for the reader. Each of the topics addressed in the book tackles the data science workflow from a practical perspective, concentrating on the process and results obtained. The implementation and deployment of trained models are central to the book. Time series analysis, natural language processing, topic modelling, social network analysis, neural networks and deep learning are comprehensively covered. The book discusses the need to develop data products and addresses the subject of bringing models to their intended audiences – in this case, literally to the users’ fingertips in the form of an iPhone app. About the Author Dr. Jesús Rogel-Salazar is a lead data scientist in the field, working for companies such as Tympa Health Technologies, Barclays, AKQA, IBM Data Science Studio and Dow Jones. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK.
Advanced Mathematical Analysis
DOWNLOAD
Author : R. Beals
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01
Advanced Mathematical Analysis written by R. Beals and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.
Once upon a time students of mathematics and students of science or engineering took the same courses in mathematical analysis beyond calculus. Now it is common to separate" advanced mathematics for science and engi neering" from what might be called "advanced mathematical analysis for mathematicians." It seems to me both useful and timely to attempt a reconciliation. The separation between kinds of courses has unhealthy effects. Mathe matics students reverse the historical development of analysis, learning the unifying abstractions first and the examples later (if ever). Science students learn the examples as taught generations ago, missing modern insights. A choice between encountering Fourier series as a minor instance of the repre sentation theory of Banach algebras, and encountering Fourier series in isolation and developed in an ad hoc manner, is no choice at all. It is easy to recognize these problems, but less easy to counter the legiti mate pressures which have led to a separation. Modern mathematics has broadened our perspectives by abstraction and bold generalization, while developing techniques which can treat classical theories in a definitive way. On the other hand, the applier of mathematics has continued to need a variety of definite tools and has not had the time to acquire the broadest and most definitive grasp-to learn necessary and sufficient conditions when simple sufficient conditions will serve, or to learn the general framework encompass ing different examples.
Data Science For Mathematicians
DOWNLOAD
Author : Nathan Carter
language : en
Publisher: CRC Press
Release Date : 2020-09-15
Data Science For Mathematicians written by Nathan Carter and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-15 with Mathematics categories.
Mathematicians have skills that, if deepened in the right ways, would enable them to use data to answer questions important to them and others, and report those answers in compelling ways. Data science combines parts of mathematics, statistics, computer science. Gaining such power and the ability to teach has reinvigorated the careers of mathematicians. This handbook will assist mathematicians to better understand the opportunities presented by data science. As it applies to the curriculum, research, and career opportunities, data science is a fast-growing field. Contributors from both academics and industry present their views on these opportunities and how to advantage them.
Mathematical And Statistical Applications In Food Engineering
DOWNLOAD
Author : Surajbhan Sevda
language : en
Publisher: CRC Press
Release Date : 2020-01-30
Mathematical And Statistical Applications In Food Engineering written by Surajbhan Sevda and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-30 with Mathematics categories.
Written by experts from all over the world, the book comprises the latest applications of mathematical and models in food engineering and fermentation. It provides the fundamentals on statistical methods to solve standard problems associated with food engineering and fermentation technology. Combining theory with a practical, hands-on approach, this book covers key aspects of food engineering. Presenting cuttingedge information, the book is an essential reference on the fundamental concepts associated with food engineering.