Advanced Mathematics And Mechanics Applications Using Matlab Third Edition

DOWNLOAD
Download Advanced Mathematics And Mechanics Applications Using Matlab Third Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Mathematics And Mechanics Applications Using Matlab Third Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Advanced Mathematics And Mechanics Applications Using Matlab Third Edition
DOWNLOAD
Author : Howard B. Wilson
language : en
Publisher: Chapman and Hall/CRC
Release Date : 2003
Advanced Mathematics And Mechanics Applications Using Matlab Third Edition written by Howard B. Wilson and has been published by Chapman and Hall/CRC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Computers categories.
This fully updated revision of its popular predecessor takes advantage of the latest features of MATLAB 6.X and its friendly, interactive environment. The material is presented sequentially according to various analytical techniques.
Advanced Mathematics And Mechanics Applications Using Matlab
DOWNLOAD
Author : David Halpern
language : en
Publisher: CRC Press
Release Date : 2002-09-17
Advanced Mathematics And Mechanics Applications Using Matlab written by David Halpern and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-09-17 with Mathematics categories.
Advanced Mathematics and Mechanics Applications Using MATLAB, Third Edition features extensive revisions that bring this best-selling text in line with MATLAB 6.x, especially its graphics and animation capabilities. It incorporates material on time dependent solutions of linear partial differential equations, a chapter on eigenvalue problems, and more than 300 pages of MATLAB solutions to important applications. The authors provide an abundance of additional physical examples related to heat conduction, inviscid fluid flow, geometrical properties, stress analysis, and multi-dimensional optimizations. The source code for all of the programs presented is freely available for download from the CRC website.
Advanced Mathematics And Mechanics Applications Using Matlab
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1994
Advanced Mathematics And Mechanics Applications Using Matlab written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with categories.
Advanced Mathematics And Mechanics Applications Using Matlab
DOWNLOAD
Author : Howard B. Wilson
language : en
Publisher: CRC Press
Release Date : 1997
Advanced Mathematics And Mechanics Applications Using Matlab written by Howard B. Wilson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Computers categories.
The seond edition of this bestselling book uses MATLAB to analyze various applications in mathematics and mechanics. MATLAB is an interactive environment for technical computing, and includes a high level programming language and simple graphics commands facilitating 2D and 3D data presentation. All the programs from the book are contained on the disk, which is organized with directories corresponding to different chapters.
Engineering Mathematics With Matlab
DOWNLOAD
Author : Won Y. Yang et. al
language : en
Publisher: Won Y. Yang
Release Date : 2019-02-01
Engineering Mathematics With Matlab written by Won Y. Yang et. al and has been published by Won Y. Yang this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-01 with Antiques & Collectibles categories.
Chapter 1: Vectors and Matrices 1.1 Vectors 1.1.1 Geometry with Vector 1.1.2 Dot Product 1.1.3 Cross Product 1.1.4 Lines and Planes 1.1.5 Vector Space 1.1.6 Coordinate Systems 1.1.7 Gram-Schmidt Orthonolization 1.2 Matrices 1.2.1 Matrix Algebra 1.2.2 Rank and Row/Column Spaces 1.2.3 Determinant and Trace 1.2.4 Eigenvalues and Eigenvectors 1.2.5 Inverse of a Matrix 1.2.6 Similarity Transformation and Diagonalization 1.2.7 Special Matrices 1.2.8 Positive Definiteness 1.2.9 Matrix Inversion Lemma 1.2.10 LU, Cholesky, QR, and Singular Value Decompositions 1.2.11 Physical Meaning of Eigenvalues/Eigenvectors 1.3 Systems of Linear Equations 1.3.1 Nonsingular Case 1.3.2 Undetermined Case - Minimum-Norm Solution 1.3.3 Overdetermined Case - Least-Squares Error Solution 1.3.4 Gauss(ian) Elimination 1.3.5 RLS (Recursive Least Squares) Algorithm Problems Chapter 2: Vector Calculus 2.1 Derivatives 2.2 Vector Functions 2.3 Velocity and Acceleration 2.4 Divergence and Curl 2.5 Line Integrals and Path Independence 2.5.1 Line Integrals 2.5.2 Path Independence 2.6 Double Integrals 2.7 Green's Theorem 2.8 Surface Integrals 2.9 Stokes' Theorem 2.10 Triple Integrals 2.11 Divergence Theorem Problems Chapter 3: Ordinary Differential Equation 3.1 First-Order Differential Equations 3.1.1 Separable Equations 3.1.2 Exact Differential Equations and Integrating Factors 3.1.3 Linear First-Order Differential Equations 3.1.4 Nonlinear First-Order Differential Equations 3.1.5 Systems of First-Order Differential Equations 3.2 Higher-Order Differential Equations 3.2.1 Undetermined Coefficients 3.2.2 Variation of Parameters 3.2.3 Cauchy-Euler Equations 3.2.4 Systems of Linear Differential Equations 3.3 Special Second-Order Linear ODEs 3.3.1 Bessel's Equation 3.3.2 Legendre's Equation 3.3.3 Chebyshev's Equation 3.3.4 Hermite's Equation 3.3.5 Laguerre's Equation 3.4 Boundary Value Problems Problems Chapter 4: Laplace Transform 4.1 Definition of the Laplace Transform 4.1.1 Laplace Transform of the Unit Step Function 4.1.2 Laplace Transform of the Unit Impulse Function 4.1.3 Laplace Transform of the Ramp Function 4.1.4 Laplace Transform of the Exponential Function 4.1.5 Laplace Transform of the Complex Exponential Function 4.2 Properties of the Laplace Transform 4.2.1 Linearity 4.2.2 Time Differentiation 4.2.3 Time Integration 4.2.4 Time Shifting - Real Translation 4.2.5 Frequency Shifting - Complex Translation 4.2.6 Real Convolution 4.2.7 Partial Differentiation 4.2.8 Complex Differentiation 4.2.9 Initial Value Theorem (IVT) 4.2.10 Final Value Theorem (FVT) 4.3 The Inverse Laplace Transform 4.4 Using of the Laplace Transform 4.5 Transfer Function of a Continuous-Time System Problems 300 Chapter 5: The Z-transform 5.1 Definition of the Z-transform 5.2 Properties of the Z-transform 5.2.1 Linearity 5.2.2 Time Shifting - Real Translation 5.2.3 Frequency Shifting - Complex Translation 5.2.4 Time Reversal 5.2.5 Real Convolution 5.2.6 Complex Convolution 5.2.7 Complex Differentiation 5.2.8 Partial Differentiation 5.2.9 Initial Value Theorem 5.2.10 Final Value Theorem 5.3 The Inverse Z-transform 5.4 Using The Z-transform 5.5 Transfer Function of a Discrete-Time System 5.6 Differential Equation and Difference Equation Problems Chapter 6: Fourier Series and Fourier Transform 6.1 Continuous-Time Fourier Series (CTFS) 6.1.1 Definition and Convergence Conditions 6.1.2 Examples of CTFS 6.2 Continuous-Time Fourier Transform (CTFT) 6.2.1 Definition and Convergence Conditions 6.2.2 (Generalized) CTFT of Periodic Signals 6.2.3 Examples of CTFT 6.2.4 Properties of CTFT 6.3 Discrete-Time Fourier Transform (DTFT) 6.3.1 Definition and Convergence Conditions 6.3.2 Examples of DTFT 6.3.3 DTFT of Periodic Sequences 6.3.4 Properties of DTFT 6.4 Discrete Fourier Transform (DFT) 6.5 Fast Fourier Transform (FFT) 6.5.1 Decimation-in-Time (DIT) FFT 6.5.2 Decimation-in-Frequency (DIF) FFT 6.5.3 Computation of IDFT Using FFT Algorithm 6.5.4 Interpretation of DFT Results 6.6 Fourier-Bessel/Legendre/Chebyshev/Cosine/Sine Series 6.6.1 Fourier-Bessel Series 6.6.2 Fourier-Legendre Series 6.6.3 Fourier-Chebyshev Series 6.6.4 Fourier-Cosine/Sine Series Problems Chapter 7: Partial Differential Equation 7.1 Elliptic PDE 7.2 Parabolic PDE 7.2.1 The Explicit Forward Euler Method 7.2.2 The Implicit Forward Euler Method 7.2.3 The Crank-Nicholson Method 7.2.4 Using the MATLAB Function 'pdepe()' 7.2.5 Two-Dimensional Parabolic PDEs 7.3 Hyperbolic PDES 7.3.1 The Explict Central Difference Method 7.3.2 Tw-Dimensional Hyperbolic PDEs 7.4 PDES in Other Coordinate Systems 7.4.1 PDEs in Polar/Cylindrical Coordinates 7.4.2 PDEs in Spherical Coordinates 7.5 Laplace/Fourier Transforms for Solving PDES 7.5.1 Using the Laplace Transform for PDEs 7.5.2 Using the Fourier Transform for PDEs Problems Chapter 8: Complex Analysis 509 8.1 Functions of a Complex Variable 8.1.1 Complex Numbers and their Powers/Roots 8.1.2 Functions of a Complex Variable 8.1.3 Cauchy-Riemann Equations 8.1.4 Exponential and Logarithmic Functions 8.1.5 Trigonometric and Hyperbolic Functions 8.1.6 Inverse Trigonometric/Hyperbolic Functions 8.2 Conformal Mapping 8.2.1 Conformal Mappings 8.2.2 Linear Fractional Transformations 8.3 Integration of Complex Functions 8.3.1 Line Integrals and Contour Integrals 8.3.2 Cauchy-Goursat Theorem 8.3.3 Cauchy's Integral Formula 8.4 Series and Residues 8.4.1 Sequences and Series 8.4.2 Taylor Series 8.4.3 Laurent Series 8.4.4 Residues and Residue Theorem 8.4.5 Real Integrals Using Residue Theorem Problems Chapter 9: Optimization 9.1 Unconstrained Optimization 9.1.1 Golden Search Method 9.1.2 Quadratic Approximation Method 9.1.3 Nelder-Mead Method 9.1.4 Steepest Descent Method 9.1.5 Newton Method 9.2 Constrained Optimization 9.2.1 Lagrange Multiplier Method 9.2.2 Penalty Function Method 9.3 MATLAB Built-in Functions for Optimization 9.3.1 Unconstrained Optimization 9.3.2 Constrained Optimization 9.3.3 Linear Programming (LP) 9.3.4 Mixed Integer Linear Programing (MILP) Problems Chapter 10: Probability 10.1 Probability 10.1.1 Definition of Probability 10.1.2 Permutations and Combinations 10.1.3 Joint Probability, Conditional Probability, and Bayes' Rule 10.2 Random Variables 10.2.1 Random Variables and Probability Distribution/Density Function 10.2.2 Joint Probability Density Function 10.2.3 Conditional Probability Density Function 10.2.4 Independence 10.2.5 Function of a Random Variable 10.2.6 Expectation, Variance, and Correlation 10.2.7 Conditional Expectation 10.2.8 Central Limit Theorem - Normal Convergence Theorem 10.3 ML Estimator and MAP Estimator 653 Problems
Exercises In Computational Mathematics With Matlab
DOWNLOAD
Author : Tom Lyche
language : en
Publisher: Springer
Release Date : 2014-09-02
Exercises In Computational Mathematics With Matlab written by Tom Lyche and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-02 with Mathematics categories.
Designed to provide tools for independent study, this book contains student-tested mathematical exercises joined with MATLAB programming exercises. Most chapters open with a review followed by theoretical and programming exercises, with detailed solutions provided for all problems including programs. Many of the MATLAB exercises are presented as Russian dolls: each question improves and completes the previous program and results are provided to validate the intermediate programs. The book offers useful MATLAB commands, advice on tables, vectors, matrices and basic commands for plotting. It contains material on eigenvalues and eigenvectors and important norms of vectors and matrices including perturbation theory; iterative methods for solving nonlinear and linear equations; polynomial and piecewise polynomial interpolation; Bézier curves; approximations of functions and integrals and more. The last two chapters considers ordinary differential equations including two point boundary value problems, and deal with finite difference methods for some partial differential equations. The format is designed to assist students working alone, with concise Review paragraphs, Math Hint footnotes on the mathematical aspects of a problem and MATLAB Hint footnotes with tips on programming.
Solving Applied Mathematical Problems With Matlab
DOWNLOAD
Author :
language : en
Publisher: CRC Press
Release Date : 2008-11-03
Solving Applied Mathematical Problems With Matlab written by and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-03 with Mathematics categories.
This textbook presents a variety of applied mathematics topics in science and engineering with an emphasis on problem solving techniques using MATLAB. The authors provide a general overview of the MATLAB language and its graphics abilities before delving into problem solving, making the book useful for readers without prior MATLAB experi
Advanced Engineering Mathematics With Matlab Third Edition
DOWNLOAD
Author : Dean G. Duffy
language : en
Publisher: CRC Press
Release Date : 2010-10-26
Advanced Engineering Mathematics With Matlab Third Edition written by Dean G. Duffy and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-26 with Mathematics categories.
Taking a practical approach to the subject, Advanced Engineering Mathematics with MATLAB®, Third Edition continues to integrate technology into the conventional topics of engineering mathematics. The author employs MATLAB to reinforce concepts and solve problems that require heavy computation. MATLAB scripts are available for download at www.crcpress.com Along with new examples, problems, and projects, this updated and expanded edition incorporates several significant improvements. New to the Third Edition New chapter on Green’s functions New section that uses the matrix exponential to solve systems of differential equations More numerical methods for solving differential equations, including Adams–Bashforth and finite element methods New chapter on probability that presents basic concepts, such as mean, variance, and probability density functions New chapter on random processes that focuses on noise and other random fluctuations Suitable for a differential equations course or a variety of engineering mathematics courses, the text covers fundamental techniques and concepts as well as Laplace transforms, separation of variable solutions to partial differential equations, the z-transform, the Hilbert transform, vector calculus, and linear algebra. It also highlights many modern applications in engineering to show how these topics are used in practice. A solutions manual is available for qualifying instructors.
Advanced Engineering Mathematics
DOWNLOAD
Author : Merle C. Potter
language : en
Publisher: Springer
Release Date : 2019-06-14
Advanced Engineering Mathematics written by Merle C. Potter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-14 with Mathematics categories.
This book is designed to serve as a core text for courses in advanced engineering mathematics required by many engineering departments. The style of presentation is such that the student, with a minimum of assistance, can follow the step-by-step derivations. Liberal use of examples and homework problems aid the student in the study of the topics presented. Ordinary differential equations, including a number of physical applications, are reviewed in Chapter One. The use of series methods are presented in Chapter Two, Subsequent chapters present Laplace transforms, matrix theory and applications, vector analysis, Fourier series and transforms, partial differential equations, numerical methods using finite differences, complex variables, and wavelets. The material is presented so that four or five subjects can be covered in a single course, depending on the topics chosen and the completeness of coverage. Incorporated in this textbook is the use of certain computer software packages. Short tutorials on Maple, demonstrating how problems in engineering mathematics can be solved with a computer algebra system, are included in most sections of the text. Problems have been identified at the end of sections to be solved specifically with Maple, and there are computer laboratory activities, which are more difficult problems designed for Maple. In addition, MATLAB and Excel have been included in the solution of problems in several of the chapters. There is a solutions manual available for those who select the text for their course. This text can be used in two semesters of engineering mathematics. The many helpful features make the text relatively easy to use in the classroom.
Global Optimization
DOWNLOAD
Author : János D. Pintér
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-10-13
Global Optimization written by János D. Pintér and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-10-13 with Mathematics categories.
Optimization models based on a nonlinear systems description often possess multiple local optima. The objective of global optimization (GO) is to find the best possible solution of multiextremal problems. This volume illustrates the applicability of GO modeling techniques and solution strategies to real-world problems. The contributed chapters cover a broad range of applications from agroecosystem management, assembly line design, bioinformatics, biophysics, black box systems optimization, cellular mobile network design, chemical process optimization, chemical product design, composite structure design, computational modeling of atomic and molecular structures, controller design for induction motors, electrical engineering design, feeding strategies in animal husbandry, the inverse position problem in kinematics, laser design, learning in neural nets, mechanical engineering design, numerical solution of equations, radiotherapy planning, robot design, and satellite data analysis. The solution strategies discussed encompass a range of practically viable methods, including both theoretically rigorous and heuristic approaches.