[PDF] Advanced Methods In Statistics Data Science And Related Applications - eBooks Review

Advanced Methods In Statistics Data Science And Related Applications


Advanced Methods In Statistics Data Science And Related Applications
DOWNLOAD

Download Advanced Methods In Statistics Data Science And Related Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Methods In Statistics Data Science And Related Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advanced Methods In Statistics Data Science And Related Applications


Advanced Methods In Statistics Data Science And Related Applications
DOWNLOAD
Author : Matilde Bini
language : en
Publisher: Springer Nature
Release Date : 2024-10-16

Advanced Methods In Statistics Data Science And Related Applications written by Matilde Bini and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-16 with Computers categories.


This book contains a selection of the improved contributions submitted by participants at the conference of the Italian Statistical Society - SIS 2022 held in Caserta 22-24 June 2022. The scientific community of Italian statistics, which gathers around the SIS, is paying particular attention to the development of statistical techniques increasingly oriented toward the processing of large data, mainly, of complex data. The main goal is to provide the analysis of the data and the interpretability of the obtained results, with a view to decision support and the reliability of the data outcomes. The aim of this volume is to show some of the most relevant contributions of statistical and data analysis methods in preserving the quality of the information to be processed, especially when it comes from different, often non-official sources; as well as in the extraction of knowledge from complex data (textual, network, unstructured and multivalue) and in the explicability of results. Data Science today represents a broad domain of knowledge development from data, where statistical and data analysis methods can make an important contribution in the different domains where data management and processing are required. This volume is addressed to researchers but also to Ph.D. and MSc students in the field of Statistics and Data Science to acquaint them with some of the most recent developments towards which statistical research is orienting, in prevalence in Italy.



Advanced Statistical Methods In Data Science


Advanced Statistical Methods In Data Science
DOWNLOAD
Author : Ding-Geng Chen
language : en
Publisher: Springer
Release Date : 2016-11-30

Advanced Statistical Methods In Data Science written by Ding-Geng Chen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-30 with Mathematics categories.


This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a full chapter for this book in order to disseminate the findings and promote further research collaborations in this area. This timely book offers new methods that impact advanced statistical model development in big-data sciences.



Statistics


Statistics
DOWNLOAD
Author : Thomas Hill
language : en
Publisher: StatSoft, Inc.
Release Date : 2006

Statistics written by Thomas Hill and has been published by StatSoft, Inc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.


This - one of a kind - book offers a comprehensive, almost encyclopedic presentation of statistical methods and analytic approaches used in science, industry, business, and data mining, written from the perspective of the real-life practitioner ("consumer") of these methods.



Data Science


Data Science
DOWNLOAD
Author : Pallavi Vijay Chavan
language : en
Publisher: CRC Press
Release Date : 2022-08-15

Data Science written by Pallavi Vijay Chavan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-15 with Business & Economics categories.


This book covers the topic of data science in a comprehensive manner and synthesizes both fundamental and advanced topics of a research area that has now reached its maturity. The book starts with the basic concepts of data science. It highlights the types of data and their use and importance, followed by a discussion on a wide range of applications of data science and widely used techniques in data science. Key Features • Provides an internationally respected collection of scientific research methods, technologies and applications in the area of data science. • Presents predictive outcomes by applying data science techniques to real-life applications. • Provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. • Gives the reader a variety of intelligent applications that can be designed using data science and its allied fields. The book is aimed primarily at advanced undergraduates and graduates studying machine learning and data science. Researchers and professionals will also find this book useful.



Introduction To Statistical And Machine Learning Methods For Data Science


Introduction To Statistical And Machine Learning Methods For Data Science
DOWNLOAD
Author : Carlos Andre Reis Pinheiro
language : en
Publisher: SAS Institute
Release Date : 2021-08-06

Introduction To Statistical And Machine Learning Methods For Data Science written by Carlos Andre Reis Pinheiro and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-06 with Computers categories.


Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.



Advanced Statistics With Applications In R


Advanced Statistics With Applications In R
DOWNLOAD
Author : Eugene Demidenko
language : en
Publisher: John Wiley & Sons
Release Date : 2019-11-12

Advanced Statistics With Applications In R written by Eugene Demidenko and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-12 with Mathematics categories.


Advanced Statistics with Applications in R fills the gap between several excellent theoretical statistics textbooks and many applied statistics books where teaching reduces to using existing packages. This book looks at what is under the hood. Many statistics issues including the recent crisis with p-value are caused by misunderstanding of statistical concepts due to poor theoretical background of practitioners and applied statisticians. This book is the product of a forty-year experience in teaching of probability and statistics and their applications for solving real-life problems. There are more than 442 examples in the book: basically every probability or statistics concept is illustrated with an example accompanied with an R code. Many examples, such as Who said π? What team is better? The fall of the Roman empire, James Bond chase problem, Black Friday shopping, Free fall equation: Aristotle or Galilei, and many others are intriguing. These examples cover biostatistics, finance, physics and engineering, text and image analysis, epidemiology, spatial statistics, sociology, etc. Advanced Statistics with Applications in R teaches students to use theory for solving real-life problems through computations: there are about 500 R codes and 100 datasets. These data can be freely downloaded from the author's website dartmouth.edu/~eugened. This book is suitable as a text for senior undergraduate students with major in statistics or data science or graduate students. Many researchers who apply statistics on the regular basis find explanation of many fundamental concepts from the theoretical perspective illustrated by concrete real-world applications.



An Introduction To Statistical Learning


An Introduction To Statistical Learning
DOWNLOAD
Author : Gareth James
language : en
Publisher: Springer Nature
Release Date : 2023-06-30

An Introduction To Statistical Learning written by Gareth James and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-30 with Mathematics categories.


An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.



Big Data Analytics


Big Data Analytics
DOWNLOAD
Author : Saumyadipta Pyne
language : en
Publisher: Springer
Release Date : 2016-10-12

Big Data Analytics written by Saumyadipta Pyne and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-12 with Computers categories.


This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Statistics For High Dimensional Data


Statistics For High Dimensional Data
DOWNLOAD
Author : Peter Bühlmann
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-08

Statistics For High Dimensional Data written by Peter Bühlmann and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-08 with Mathematics categories.


Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.