[PDF] Advanced Models Of Neural Networks - eBooks Review

Advanced Models Of Neural Networks


Advanced Models Of Neural Networks
DOWNLOAD

Download Advanced Models Of Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Models Of Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advanced Applied Deep Learning


Advanced Applied Deep Learning
DOWNLOAD
Author : Umberto Michelucci
language : en
Publisher: Apress
Release Date : 2019-09-28

Advanced Applied Deep Learning written by Umberto Michelucci and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-28 with Computers categories.


Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In Advanced Applied Deep Learning, you will study advanced topics on CNN and object detection using Keras and TensorFlow. Along the way, you will look at the fundamental operations in CNN, such as convolution and pooling, and then look at more advanced architectures such as inception networks, resnets, and many more. While the book discusses theoretical topics, you will discover how to work efficiently with Keras with many tricks and tips, including how to customize logging in Keras with custom callback classes, what is eager execution, and how to use it in your models. Finally, you will study how object detection works, and build a complete implementation of the YOLO (you only look once) algorithm in Keras and TensorFlow. By the end of the book you will have implemented various models in Keras and learned many advanced tricks that will bring your skills to the next level. What You Will Learn See how convolutional neural networks and object detection work Save weights and models on disk Pause training and restart it at a later stage Use hardware acceleration (GPUs) in your code Work with the Dataset TensorFlow abstraction and use pre-trained models and transfer learning Remove and add layers to pre-trained networks to adapt them to your specific project Apply pre-trained models such as Alexnet and VGG16 to new datasets Who This Book Is For Scientists and researchers with intermediate-to-advanced Python and machine learning know-how. Additionally, intermediate knowledge of Keras and TensorFlow is expected.



Advanced Models Of Neural Networks


Advanced Models Of Neural Networks
DOWNLOAD
Author : Gerasimos G. Rigatos
language : en
Publisher: Springer
Release Date : 2014-08-27

Advanced Models Of Neural Networks written by Gerasimos G. Rigatos and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-27 with Technology & Engineering categories.


This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.



Static And Dynamic Neural Networks


Static And Dynamic Neural Networks
DOWNLOAD
Author : Madan Gupta
language : en
Publisher: John Wiley & Sons
Release Date : 2004-04-05

Static And Dynamic Neural Networks written by Madan Gupta and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-04-05 with Computers categories.


Neuronale Netze haben sich in vielen Bereichen der Informatik und künstlichen Intelligenz, der Robotik, Prozeßsteuerung und Entscheidungsfindung bewährt. Um solche Netze für immer komplexere Aufgaben entwickeln zu können, benötigen Sie solide Kenntnisse der Theorie statischer und dynamischer neuronaler Netze. Aneignen können Sie sie sich mit diesem Lehrbuch! Alle theoretischen Konzepte sind in anschaulicher Weise mit praktischen Anwendungen verknüpft. Am Ende jedes Kapitels können Sie Ihren Wissensstand anhand von Übungsaufgaben überprüfen.



Practical Convolutional Neural Networks


Practical Convolutional Neural Networks
DOWNLOAD
Author : Mohit Sewak
language : en
Publisher:
Release Date : 2018

Practical Convolutional Neural Networks written by Mohit Sewak and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Data mining categories.


"Convolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative e-commerce, and more. You will learn to create innovative solutions around image and video analytics to solve complex machine learning- and computer vision-related problems and implement real-life CNN models. This course starts with an overview of deep neural networks using image classification as an example and walks you through building your first CNN: a human face detector. You will learn to use concepts such as transfer learning with CNN and auto-encoders to build very powerful models, even when little-supervised training data for labeled images is available. Later we build upon this to build advanced vision-related algorithms for object detection, instance segmentation, image captioning, attention mechanisms for vision, and recurrent models for vision. By the end of this course, you should be ready to implement advanced, effective, and efficient CNN models professionally or personally, by working on a complex image and video datasets."--Resource description page.



Principles Of Artificial Neural Networks


Principles Of Artificial Neural Networks
DOWNLOAD
Author : Daniel Graupe
language : en
Publisher: World Scientific
Release Date : 2007

Principles Of Artificial Neural Networks written by Daniel Graupe and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.


This book should serves as a self-study course for engineers and computer scientist in the industry. The features include major neural network approaches and architectures with theories and detailed case studies for each of the approaches acompanied by complete computer codes and the corresponding computed results. There is also a chapter on LAMSTAR neural network.



Neural Networks And Deep Learning


Neural Networks And Deep Learning
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2018-08-25

Neural Networks And Deep Learning written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-25 with Computers categories.


This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.



Neural Networks In Finance


Neural Networks In Finance
DOWNLOAD
Author : Paul D. McNelis
language : en
Publisher: Elsevier
Release Date : 2005-01-20

Neural Networks In Finance written by Paul D. McNelis and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-20 with Computers categories.


This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong.* Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website



Forecasting Principles And Practice


Forecasting Principles And Practice
DOWNLOAD
Author : Rob J Hyndman
language : en
Publisher: OTexts
Release Date : 2018-05-08

Forecasting Principles And Practice written by Rob J Hyndman and has been published by OTexts this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-08 with Business & Economics categories.


Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.



Neural Networks


Neural Networks
DOWNLOAD
Author : Raul Rojas
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29

Neural Networks written by Raul Rojas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Computers categories.


Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.



Advanced Deep Learning With R


Advanced Deep Learning With R
DOWNLOAD
Author : Bharatendra Rai
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-17

Advanced Deep Learning With R written by Bharatendra Rai and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-17 with Computers categories.


Discover best practices for choosing, building, training, and improving deep learning models using Keras-R, and TensorFlow-R libraries Key FeaturesImplement deep learning algorithms to build AI models with the help of tips and tricksUnderstand how deep learning models operate using expert techniquesApply reinforcement learning, computer vision, GANs, and NLP using a range of datasetsBook Description Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data. Advanced Deep Learning with R will help you understand popular deep learning architectures and their variants in R, along with providing real-life examples for them. This deep learning book starts by covering the essential deep learning techniques and concepts for prediction and classification. You will learn about neural networks, deep learning architectures, and the fundamentals for implementing deep learning with R. The book will also take you through using important deep learning libraries such as Keras-R and TensorFlow-R to implement deep learning algorithms within applications. You will get up to speed with artificial neural networks, recurrent neural networks, convolutional neural networks, long short-term memory networks, and more using advanced examples. Later, you'll discover how to apply generative adversarial networks (GANs) to generate new images; autoencoder neural networks for image dimension reduction, image de-noising and image correction and transfer learning to prepare, define, train, and model a deep neural network. By the end of this book, you will be ready to implement your knowledge and newly acquired skills for applying deep learning algorithms in R through real-world examples. What you will learnLearn how to create binary and multi-class deep neural network modelsImplement GANs for generating new imagesCreate autoencoder neural networks for image dimension reduction, image de-noising and image correctionImplement deep neural networks for performing efficient text classificationLearn to define a recurrent convolutional network model for classification in KerasExplore best practices and tips for performance optimization of various deep learning modelsWho this book is for This book is for data scientists, machine learning practitioners, deep learning researchers and AI enthusiasts who want to develop their skills and knowledge to implement deep learning techniques and algorithms using the power of R. A solid understanding of machine learning and working knowledge of the R programming language are required.