Advanced Radar Detection Schemes Under Mismatched Signal Models

DOWNLOAD
Download Advanced Radar Detection Schemes Under Mismatched Signal Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Radar Detection Schemes Under Mismatched Signal Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Advanced Radar Detection Schemes Under Mismatched Signal Models
DOWNLOAD
Author : Francesco Bandiera
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2009-03-08
Advanced Radar Detection Schemes Under Mismatched Signal Models written by Francesco Bandiera and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-08 with Technology & Engineering categories.
Adaptive detection of signals embedded in correlated Gaussian noise has been an active field of research in the last decades. This topic is important in many areas of signal processing such as, just to give some examples, radar, sonar, communications, and hyperspectral imaging. Most of the existing adaptive algorithms have been designed following the lead of the derivation of Kelly's detector which assumes perfect knowledge of the target steering vector. However, in realistic scenarios, mismatches are likely to occur due to both environmental and instrumental factors. When a mismatched signal is present in the data under test, conventional algorithms may suffer severe performance degradation. The presence of strong interferers in the cell under test makes the detection task even more challenging. An effective way to cope with this scenario relies on the use of "tunable" detectors, i.e., detectors capable of changing their directivity through the tuning of proper parameters. The aim of this book is to present some recent advances in the design of tunable detectors and the focus is on the so-called two-stage detectors, i.e., adaptive algorithms obtained cascading two detectors with opposite behaviors. We derive exact closed-form expressions for the resulting probability of false alarm and the probability of detection for both matched and mismatched signals embedded in homogeneous Gaussian noise. It turns out that such solutions guarantee a wide operational range in terms of tunability while retaining, at the same time, an overall performance in presence of matched signals commensurate with Kelly's detector. Table of Contents: Introduction / Adaptive Radar Detection of Targets / Adaptive Detection Schemes for Mismatched Signals / Enhanced Adaptive Sidelobe Blanking Algorithms / Conclusions
Advanced Radar Detection Schemes Under Mismatched Signal Models
DOWNLOAD
Author : Francesco Bandiera
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Advanced Radar Detection Schemes Under Mismatched Signal Models written by Francesco Bandiera and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Technology & Engineering categories.
Adaptive detection of signals embedded in correlated Gaussian noise has been an active field of research in the last decades. This topic is important in many areas of signal processing such as, just to give some examples, radar, sonar, communications, and hyperspectral imaging. Most of the existing adaptive algorithms have been designed following the lead of the derivation of Kelly's detector which assumes perfect knowledge of the target steering vector. However, in realistic scenarios, mismatches are likely to occur due to both environmental and instrumental factors. When a mismatched signal is present in the data under test, conventional algorithms may suffer severe performance degradation. The presence of strong interferers in the cell under test makes the detection task even more challenging. An effective way to cope with this scenario relies on the use of "tunable" detectors, i.e., detectors capable of changing their directivity through the tuning of proper parameters. The aim of this book is to present some recent advances in the design of tunable detectors and the focus is on the so-called two-stage detectors, i.e., adaptive algorithms obtained cascading two detectors with opposite behaviors. We derive exact closed-form expressions for the resulting probability of false alarm and the probability of detection for both matched and mismatched signals embedded in homogeneous Gaussian noise. It turns out that such solutions guarantee a wide operational range in terms of tunability while retaining, at the same time, an overall performance in presence of matched signals commensurate with Kelly's detector. Table of Contents: Introduction / Adaptive Radar Detection of Targets / Adaptive Detection Schemes for Mismatched Signals / Enhanced Adaptive Sidelobe Blanking Algorithms / Conclusions
Adaptive Radar Detection Model Based Data Driven And Hybrid Approaches
DOWNLOAD
Author : Angelo Coluccia
language : en
Publisher: Artech House
Release Date : 2022-11-30
Adaptive Radar Detection Model Based Data Driven And Hybrid Approaches written by Angelo Coluccia and has been published by Artech House this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-30 with Technology & Engineering categories.
This book shows you how to adopt data-driven techniques for the problem of radar detection, both per se and in combination with model-based approaches. In particular, the focus is on space-time adaptive target detection against a background of interference consisting of clutter, possible jammers, and noise. It is a handy, concise reference for many classic (model-based) adaptive radar detection schemes as well as the most popular machine learning techniques (including deep neural networks) and helps you identify suitable data-driven approaches for radar detection and the main related issues. You’ll learn how data-driven tools relate to, and can be coupled or hybridized with, traditional adaptive detection statistics; understand fundamental concepts, schemes, and algorithms from statistical learning, classification, and neural networks domains. The book also walks you through how these concepts and schemes have been adapted for the problem of radar detection in the literature and provides you with a methodological guide for the design, illustrating different possible strategies. You’ll be equipped to develop a unified view, under which you can exploit the new possibilities of the data-driven approach even using simulated data. This book is an excellent resource for Radar professionals and industrial researchers, postgraduate students in electrical engineering and the academic community.
Adaptive Detection Of Multichannel Signals Exploiting Persymmetry
DOWNLOAD
Author : Jun Liu
language : en
Publisher: CRC Press
Release Date : 2022-12-20
Adaptive Detection Of Multichannel Signals Exploiting Persymmetry written by Jun Liu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-20 with Technology & Engineering categories.
This book offers a systematic presentation of persymmetric adaptive detection, including detector derivations and the definition of key concepts, followed by detailed discussion relating to theoretical underpinnings, design methodology, design considerations, and techniques enabling its practical implementation. The received data for modern radar systems are usually multichannel, namely, vector-valued, or even matrix-valued. Multichannel signal detection in Gaussian backgrounds is a fundamental problem for radar applications. With an overarching focus on persymmetric adaptive detectors, this book presents the mathematical models and design principles necessary for analyzing the behavior of each kind of persymmetric adaptive detector. Building upon that, it also introduces new design approaches and techniques that will guide engineering students as well as radar engineers toward efficient detector solutions, especially in challenging sample-starved environments where training data are limited. This book will be of interest to students, scholars, and engineers in the field of signal processing. It will be especially useful for those who have a solid background in statistical signal processing, multivariate statistical analysis, matrix theory, and mathematical analysis.
Advances In Adaptive Radar Detection And Range Estimation
DOWNLOAD
Author : Chengpeng Hao
language : en
Publisher: Springer Nature
Release Date : 2021-12-03
Advances In Adaptive Radar Detection And Range Estimation written by Chengpeng Hao and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-03 with Technology & Engineering categories.
This book provides a comprehensive and systematic framework for the design of adaptive architectures, which take advantage of the available a priori information to enhance the detection performance. Moreover, this framework also provides guidelines to develop decision schemes capable of estimating the target position within the range bin. To this end, the readers are driven step-by-step towards those aspects that have to be accounted for at the design stage, starting from the exploitation of system and/or environment information up to the use of target energy leakage (energy spillover), which allows inferring on the target position within the range cell under test.In addition to design issues, this book presents an extensive number of illustrative examples based upon both simulated and real-recorded data. Moreover, the performance analysis is enriched by considerations about the trade-off between performances and computational requirements.Finally, this book could be a valuable resource for PhD students, researchers, professors, and, more generally, engineers working on statistical signal processing and its applications to radar systems.
Information Theoretic Radar Signal Processing
DOWNLOAD
Author : Yujie Gu
language : en
Publisher: John Wiley & Sons
Release Date : 2024-11-27
Information Theoretic Radar Signal Processing written by Yujie Gu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-27 with Technology & Engineering categories.
A comprehensive introduction to the emerging research in information-theoretic radar signal processing Signal processing plays a pivotal role in radar systems to estimate, visualize, and leverage useful target information from noisy and distorted radar signals, harnessing their spatial characteristics, temporal features, and Doppler signatures. The burgeoning applications of information theory in radar signal processing provide a distinct perspective for tackling diverse challenges, including optimized waveform design, performance bound analysis, robust filtering, and target enumeration. Information-Theoretic Radar Signal Processing provides a comprehensive introduction to radar signal processing from an information theory perspective. Covering both fundamental principles and advanced techniques, the book facilitates the integration of information theory into radar signal processing, broadening the scope and improving the performance. Tailored to the needs of researchers and students alike, it serves as a valuable resource for comprehending the information-theoretic aspects of radar signal processing. Information-Theoretic Radar Signal Processing readers will also find: Presentation of alternative hypotheses in adaptive radar detection Detailed discussion of topics including resource management and power allocation Direction-of-arrival (DOA) estimation and integrated sensing and communications (ISAC) Information-Theoretic Radar Signal Processing is ideal for graduate students, scientists, researchers, and engineers, who work on the broad scope of radar and sonar applications, including target detection, estimation, imaging, tracking, and classification using radio frequency, ultrasonic, and acoustic methods.
Sonar Systems
DOWNLOAD
Author : Nikolai Kolev
language : en
Publisher: BoD – Books on Demand
Release Date : 2011-09-12
Sonar Systems written by Nikolai Kolev and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-12 with Technology & Engineering categories.
The book is an edited collection of research articles covering the current state of sonar systems, the signal processing methods and their applications prepared by experts in the field. The first section is dedicated to the theory and applications of innovative synthetic aperture, interferometric, multistatic sonars and modeling and simulation. Special section in the book is dedicated to sonar signal processing methods covering: passive sonar array beamforming, direction of arrival estimation, signal detection and classification using DEMON and LOFAR principles, adaptive matched field signal processing. The image processing techniques include: image denoising, detection and classification of artificial mine like objects and application of hidden Markov model and artificial neural networks for signal classification. The biology applications include the analysis of biosonar capabilities and underwater sound influence on human hearing. The marine science applications include fish species target strength modeling, identification and discrimination from bottom scattering and pelagic biomass neural network estimation methods. Marine geology has place in the book with geomorphological parameters estimation from side scan sonar images. The book will be interesting not only for specialists in the area but also for readers as a guide in sonar systems principles of operation, signal processing methods and marine applications.
Smartphone Based Real Time Digital Signal Processing Third Edition
DOWNLOAD
Author : Abhishek Sehgal
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Smartphone Based Real Time Digital Signal Processing Third Edition written by Abhishek Sehgal and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Technology & Engineering categories.
Real-time or applied digital signal processing courses are offered as follow-ups to conventional or theory-oriented digital signal processing courses in many engineering programs for the purpose of teaching students the technical know-how for putting signal processing algorithms or theory into practical use. These courses normally involve access to a teaching laboratory that is equipped with hardware boards, in particular DSP boards, together with their supporting software. A number of textbooks have been written discussing how to achieve real-time implementation on these hardware boards. This book discusses how to use smartphones as hardware boards for real-time implementation of signal processing algorithms, thus providing an alternative to the hardware boards that are used in signal processing laboratory courses. The fact that mobile devices, in particular smartphones, have become powerful processing platforms led to the development of this book to enable students to use their own smartphones to run signal processing algorithms in real-time considering that these days nearly all students possess smartphones. Changing the hardware platforms that are currently used in applied or real-time signal processing courses to smartphones creates a truly flexible laboratory experience or environment for students. In addition, it relieves the cost burden associated with using dedicated signal processing boards noting that the software development tools for smartphones are free of charge and are well-maintained by smartphone manufacturers. This book is written in such a way that it can be used as a textbook for real-time or applied digital signal processing courses offered at many universities. Ten lab experiments that are commonly encountered in such courses are covered in the book. It is written primarily for those who are already familiar with signal processing concepts and are interested in their real-time and practical aspects. Similar to existing real-time courses, knowledge of C programming is assumed. This book can also be used as a self-study guide for those who wish to become familiar with signal processing app development on either Android or iOS smartphones/tablets.
Smartphone Based Real Time Digital Signal Processing
DOWNLOAD
Author : Nasser Kehtarnavaz
language : en
Publisher: Springer Nature
Release Date : 2022-11-10
Smartphone Based Real Time Digital Signal Processing written by Nasser Kehtarnavaz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-10 with Technology & Engineering categories.
Real-time or applied digital signal processing courses are offered as follow-ups to conventional or theory-oriented digital signal processing courses in many engineering programs for the purpose of teaching students the technical know-how for putting signal processing algorithms or theory into practical use. These courses normally involve access to a teaching laboratory that is equipped with hardware boards, in particular DSP boards, together with their supporting software. A number of textbooks have been written discussing how to achieve real-time implementation on these hardware boards. This book discusses how smartphones can be used as hardware boards for real-time implementation of signal processing algorithms as an alternative to the hardware boards that are currently being used in signal processing teaching laboratories. The fact that mobile devices, in particular smartphones, have now become powerful processing platforms has led to the development of this book, thus enabling students to use their own smartphones to run signal processing algorithms in real-time considering that these days nearly all students possess smartphones. Changing the hardware platforms that are currently used in applied or real-time signal processing courses to smartphones creates a truly mobile laboratory experience or environment for students. In addition, it relieves the cost burden associated with using a dedicated signal processing board noting that the software development tools for smartphones are free of charge and are well-developed. This book is written in such a way that it can be used as a textbook for applied or real time digital signal processing courses offered at many universities. Ten lab experiments that are commonly encountered in such courses are covered in the book. This book is written primarily for those who are already familiar with signal processing concepts and are interested in their real-time and practical aspects. Similar to existing real-time courses, knowledge of C programming is assumed. This book can also be used as a self-study guide for those who wish to become familiar with signal processing app development on either Android or iPhone smartphones. All the lab codes can be obtained as a software package from http://sites.fastspring.com/bookcodes/product/bookcodes
Sequential Monte Carlo Methods For Nonlinear Discrete Time Filtering
DOWNLOAD
Author : Marcelo G. S. Bruno
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Sequential Monte Carlo Methods For Nonlinear Discrete Time Filtering written by Marcelo G. S. Bruno and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Technology & Engineering categories.
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary