Advanced Statistical Analytics For Health Data Science With Sas And R

DOWNLOAD
Download Advanced Statistical Analytics For Health Data Science With Sas And R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Statistical Analytics For Health Data Science With Sas And R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Statistical Analytics For Health Data Science With Sas And R
DOWNLOAD
Author : Jeffrey Wilson
language : en
Publisher: CRC Press
Release Date : 2023-03-28
Statistical Analytics For Health Data Science With Sas And R written by Jeffrey Wilson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-28 with Business & Economics categories.
This book aims to compile typical fundamental-to-advanced statistical methods to be used for health data sciences. Although the book promotes applications to health and health-related data, the models in the book can be used to analyze any kind of data. The data are analyzed with the commonly used statistical software of R/SAS (with online supplementary on SPSS/Stata). The data and computing programs will be available to facilitate readers’ learning experience. There has been considerable attention to making statistical methods and analytics available to health data science researchers and students. This book brings it all together to provide a concise point-of-reference for the most commonly used statistical methods from the fundamental level to the advanced level. We envisage this book will contribute to the rapid development in health data science. We provide straightforward explanations of the collected statistical theory and models, compilations of a variety of publicly available data, and illustrations of data analytics using commonly used statistical software of SAS/R. We will have the data and computer programs available for readers to replicate and implement the new methods. The primary readers would be applied data scientists and practitioners in any field of data science, applied statistical analysts and scientists in public health, academic researchers, and graduate students in statistics and biostatistics. The secondary readers would be R&D professionals/practitioners in industry and governmental agencies. This book can be used for both teaching and applied research.
Advanced Statistical Analytics For Health Data Science With Sas And R
DOWNLOAD
Author : Chen
language : en
Publisher: CRC Press
Release Date : 2025-09-16
Advanced Statistical Analytics For Health Data Science With Sas And R written by Chen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-09-16 with Mathematics categories.
Serves as a comprehensive reference for health data scientists, bridging fundamental statistical principles with advanced analytical techniques. Provides clear explanations of statistical theory and its application to real-world health data.
Statistical Analytics For Health Data Science Using R Sas
DOWNLOAD
Author : Jeffrey R. Wilson
language : en
Publisher:
Release Date : 2023
Statistical Analytics For Health Data Science Using R Sas written by Jeffrey R. Wilson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with Medical statistics categories.
"This book is aimed to compile typical fundamental to advanced statistical methods to be used for health data sciences. This book promotes the applications to health and health-related data. However, the models in this book can be used to analyse any kind of data. The data are analysed with the commonly used statistical software of R/SAS (with online supplementary on SPSS/Stata). The data and computing programs will be available to facilitate readers' learning experience. There has been considerable attention to making statistical methods and analytics available to health data science researchers and students. This book brings it all together to provide a concise point-of-reference for most commonly used statistical methods from the fundamental level to the advanced level. We envisage this book will contribute to the rapid development in health data science. We provide straightforward explanations of the collected statistical theory and models, compilations of a variety of publicly available data, and illustrations of data analytics using commonly used statistical software of SAS/R. We will have the data and computer programs available for readers to replicate and implement the new methods. The primary readers would be applied data scientists and practitioners in any field of data science, applied statistical analysts and scientists in public health, academic researchers, and graduate students in statistics and biostatistics. The secondary readers would be R&D professionals/practitioners in industry and governmental agencies. This book can be used for both teaching and applied research"--
R For Health Data Science
DOWNLOAD
Author : Ewen Harrison
language : en
Publisher: CRC Press
Release Date : 2020-12-31
R For Health Data Science written by Ewen Harrison and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-31 with Medical categories.
In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms.
Statistics For Health Data Science
DOWNLOAD
Author : Ruth Etzioni
language : en
Publisher: Springer Nature
Release Date : 2021-01-04
Statistics For Health Data Science written by Ruth Etzioni and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-04 with Medical categories.
Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students’ anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep (“organic”) understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/
Design And Analysis Of Pragmatic Trials
DOWNLOAD
Author : Song Zhang
language : en
Publisher: CRC Press
Release Date : 2023-05-16
Design And Analysis Of Pragmatic Trials written by Song Zhang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-16 with Mathematics categories.
This book begins with an introduction of pragmatic cluster randomized trials (PCTs) and reviews various pragmatic issues that need to be addressed by statisticians at the design stage. It discusses the advantages and disadvantages of each type of PCT, and provides sample size formulas, sensitivity analyses, and examples for sample size calculation. The generalized estimating equation (GEE) method will be employed to derive sample size formulas for various types of outcomes from the exponential family, including continuous, binary, and count variables. Experimental designs that have been frequently employed in PCTs will be discussed, including cluster randomized designs, matched-pair cluster randomized design, stratified cluster randomized design, stepped-wedge cluster randomized design, longitudinal cluster randomized design, and crossover cluster randomized design. It demonstrates that the GEE approach is flexible to accommodate pragmatic issues such as hierarchical correlation structures, different missing data patterns, randomly varying cluster sizes, etc. It has been reported that the GEE approach leads to under-estimated variance with limited numbers of clusters. The remedy for this limitation is investigated for the design of PCTs. This book can assist practitioners in the design of PCTs by providing a description of the advantages and disadvantages of various PCTs and sample size formulas that address various pragmatic issues, facilitating the proper implementation of PCTs to improve health care. It can also serve as a textbook for biostatistics students at the graduate level to enhance their knowledge or skill in clinical trial design. Key Features: Discuss the advantages and disadvantages of each type of PCTs, and provide sample size formulas, sensitivity analyses, and examples. Address an unmet need for guidance books on sample size calculations for PCTs; A wide variety of experimental designs adopted by PCTs are covered; The sample size solutions can be readily implemented due to the accommodation of common pragmatic issues encountered in real-world practice; Useful to both academic and industrial biostatisticians involved in clinical trial design; Can be used as a textbook for graduate students majoring in statistics and biostatistics.
Roc Analysis For Classification And Prediction In Practice
DOWNLOAD
Author : Christos T Nakas
language : en
Publisher: CRC Press
Release Date : 2023-05-15
Roc Analysis For Classification And Prediction In Practice written by Christos T Nakas and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-15 with Mathematics categories.
This book presents a unified and up-to-date introduction to ROC methodologies, covering both diagnosis (classification) and prediction. The emphasis is on the conceptual underpinning of ROC analysis and the practical implementation in diverse scientific fields. A plethora of examples accompany the methodologic discussion using standard statistical software such as R and STATA. The book arrives after two decades of intensive growth in both the methods and the applications of ROC analysis and presents a new synthesis. The authors provide a contemporary, integrated exposition of ROC methodology for both classification and prediction and include material on multiple-class ROC. This book avoids lengthy technical exposition and provides code and datasets in each chapter. ROC Analysis for Classification and Prediction in Practice is intended for researchers and graduate students, but will also be useful for those that use ROC analysis in diverse disciplines such as diagnostic medicine, bioinformatics, medical physics, and perception psychology.
Clinical Trial Data Analysis Using R And Sas
DOWNLOAD
Author : Ding-Geng (Din) Chen
language : en
Publisher: CRC Press
Release Date : 2017-06-01
Clinical Trial Data Analysis Using R And Sas written by Ding-Geng (Din) Chen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-01 with Mathematics categories.
Review of the First Edition "The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods."—Journal of Statistical Software Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book’s practical, detailed approach draws on the authors’ 30 years’ experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data. What’s New in the Second Edition Adds SAS programs along with the R programs for clinical trial data analysis. Updates all the statistical analysis with updated R packages. Includes correlated data analysis with multivariate analysis of variance. Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials. Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials.
Controlled Epidemiological Studies
DOWNLOAD
Author : Marie Reilly
language : en
Publisher: CRC Press
Release Date : 2023-05-26
Controlled Epidemiological Studies written by Marie Reilly and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-26 with Mathematics categories.
This book covers classic epidemiological designs that use a reference/control group, including case-control, case-cohort, nested case-control and variations of these designs, such as stratified and two-stage designs. It presents a unified view of these sampling designs as representations of an underlying cohort or target population of interest. This enables various extended designs to be introduced and analysed with a similar approach: extreme sampling on the outcome (extreme case-control design) or on the exposure (exposure-enriched, exposure-density, countermatched), designs that re-use prior controls and augmentation sampling designs. Further extensions exploit aggregate data for efficient cluster sampling, accommodate time-varying exposures and combine matched and unmatched controls. Self-controlled designs, including case-crossover, self-controlled case series and exposure-crossover, are also presented. The test-negative design for vaccine studies and the use of negative controls for bias assessment are introduced and discussed. This book is intended for graduate students in biostatistics, epidemiology and related disciplines, or for health researchers and data analysts interested in extending their knowledge of study design and data analysis skills. This book Bridges the gap between epidemiology and the more mathematically oriented biostatistics books. Assembles the wealth of epidemiological knowledge about observational study designs that is scattered over several decades of scientific publications. Illustrates the performance of methods in real research applications. Provides guidelines for implementation in standard software packages (Stata, R). Includes numerous exercises, covering simple mathematical proofs, consideration of proposed or published designs, and practical data analysis.
Understanding Advanced Statistical Methods
DOWNLOAD
Author : Peter Westfall
language : en
Publisher: CRC Press
Release Date : 2013-04-09
Understanding Advanced Statistical Methods written by Peter Westfall and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-09 with Mathematics categories.
Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more easily understand the machinery of advanced statistics. It also downplays the "population" interpretation of statistical models and presents Bayesian methods before frequentist ones. Requiring no prior calculus experience, the text employs a "just-in-time" approach that introduces mathematical topics, including calculus, where needed. Formulas throughout the text are used to explain why calculus and probability are essential in statistical modeling. The authors also intuitively explain the theory and logic behind real data analysis, incorporating a range of application examples from the social, economic, biological, medical, physical, and engineering sciences. Enabling your students to answer the why behind statistical methods, this text teaches them how to successfully draw conclusions when the premises are flawed. It empowers them to use advanced statistical methods with confidence and develop their own statistical recipes. Ancillary materials are available on the book’s website.