Advances In Bayesian Networks

DOWNLOAD
Download Advances In Bayesian Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Bayesian Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Advances In Bayesian Networks
DOWNLOAD
Author : José A. Gámez
language : en
Publisher: Springer
Release Date : 2013-06-29
Advances In Bayesian Networks written by José A. Gámez and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.
In recent years probabilistic graphical models, especially Bayesian networks and decision graphs, have experienced significant theoretical development within areas such as artificial intelligence and statistics. This carefully edited monograph is a compendium of the most recent advances in the area of probabilistic graphical models such as decision graphs, learning from data and inference. It presents a survey of the state of the art of specific topics of recent interest of Bayesian Networks, including approximate propagation, abductive inferences, decision graphs, and applications of influence. In addition, Advances in Bayesian Networks presents a careful selection of applications of probabilistic graphical models to various fields such as speech recognition, meteorology or information retrieval.
Modeling And Reasoning With Bayesian Networks
DOWNLOAD
Author : Adnan Darwiche
language : en
Publisher: Cambridge University Press
Release Date : 2009-04-06
Modeling And Reasoning With Bayesian Networks written by Adnan Darwiche and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-06 with Computers categories.
This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.
Learning Bayesian Networks
DOWNLOAD
Author : Richard E. Neapolitan
language : en
Publisher: Prentice Hall
Release Date : 2004
Learning Bayesian Networks written by Richard E. Neapolitan and has been published by Prentice Hall this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Computers categories.
In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.
Innovations In Bayesian Networks
DOWNLOAD
Author : Dawn E. Holmes
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-10-02
Innovations In Bayesian Networks written by Dawn E. Holmes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-10-02 with Mathematics categories.
Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research.
Bayesian Networks For Probabilistic Inference And Decision Analysis In Forensic Science
DOWNLOAD
Author : Franco Taroni
language : en
Publisher: John Wiley & Sons
Release Date : 2014-07-21
Bayesian Networks For Probabilistic Inference And Decision Analysis In Forensic Science written by Franco Taroni and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-21 with Mathematics categories.
Bayesian Networks “This book should have a place on the bookshelf of every forensic scientist who cares about the science of evidence interpretation.” Dr. Ian Evett, Principal Forensic Services Ltd, London, UK Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science Second Edition Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates diffculties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. Includes self-contained introductions to probability and decision theory. Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. Features implementation of the methodology with reference to commercial and academically available software. Presents standard networks and their extensions that can be easily implemented and that can assist in the reader’s own analysis of real cases. Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.
Advanced Methodologies For Bayesian Networks
DOWNLOAD
Author : Joe Suzuki
language : en
Publisher: Springer
Release Date : 2016-01-07
Advanced Methodologies For Bayesian Networks written by Joe Suzuki and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-07 with Computers categories.
This volume constitutes the refereed proceedings of the Second International Workshop on Advanced Methodologies for Bayesian Networks, AMBN 2015, held in Yokohama, Japan, in November 2015. The 18 revised full papers and 6 invited abstracts presented were carefully reviewed and selected from numerous submissions. In the International Workshop on Advanced Methodologies for Bayesian Networks (AMBN), the researchers explore methodologies for enhancing the effectiveness of graphical models including modeling, reasoning, model selection, logic-probability relations, and causality. The exploration of methodologies is complemented discussions of practical considerations for applying graphical models in real world settings, covering concerns like scalability, incremental learning, parallelization, and so on.
Bayesian Networks
DOWNLOAD
Author : Olivier Pourret
language : en
Publisher: John Wiley & Sons
Release Date : 2008-04-30
Bayesian Networks written by Olivier Pourret and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-30 with Mathematics categories.
Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.
Bayesian Networks
DOWNLOAD
Author : Marco Scutari
language : en
Publisher: CRC Press
Release Date : 2021-07-28
Bayesian Networks written by Marco Scutari and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-28 with Computers categories.
Bayesian Networks: With Examples in R, Second Edition introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples illustrate each step of the modelling process and discuss side by side the underlying theory and its application using R code. The examples start from the simplest notions and gradually increase in complexity. In particular, this new edition contains significant new material on topics from modern machine-learning practice: dynamic networks, networks with heterogeneous variables, and model validation. The first three chapters explain the whole process of Bayesian network modelling, from structure learning to parameter learning to inference. These chapters cover discrete, Gaussian, and conditional Gaussian Bayesian networks. The following two chapters delve into dynamic networks (to model temporal data) and into networks including arbitrary random variables (using Stan). The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R packages and other software implementing Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein-signalling network published in Science and a probabilistic graphical model for predicting the composition of different body parts. Covering theoretical and practical aspects of Bayesian networks, this book provides you with an introductory overview of the field. It gives you a clear, practical understanding of the key points behind this modelling approach and, at the same time, it makes you familiar with the most relevant packages used to implement real-world analyses in R. The examples covered in the book span several application fields, data-driven models and expert systems, probabilistic and causal perspectives, thus giving you a starting point to work in a variety of scenarios. Online supplementary materials include the data sets and the code used in the book, which will all be made available from https://www.bnlearn.com/book-crc-2ed/
Bayesian Networks And Decision Graphs
DOWNLOAD
Author : Thomas Dyhre Nielsen
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-03-17
Bayesian Networks And Decision Graphs written by Thomas Dyhre Nielsen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-17 with Science categories.
This is a brand new edition of an essential work on Bayesian networks and decision graphs. It is an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. The reader is guided through the two types of frameworks with examples and exercises, which also give instruction on how to build these models. Structured in two parts, the first section focuses on probabilistic graphical models, while the second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision process and partially ordered decision problems.
Introduction To Bayesian Networks
DOWNLOAD
Author : Finn V. Jensen
language : en
Publisher: Springer
Release Date : 1997-08-15
Introduction To Bayesian Networks written by Finn V. Jensen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-08-15 with Mathematics categories.
Disk contains: Tool for building Bayesian networks -- Library of examples -- Library of proposed solutions to some exercises.