[PDF] Advances In Data Analysis - eBooks Review

Advances In Data Analysis


Advances In Data Analysis
DOWNLOAD

Download Advances In Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



The Sage Sourcebook Of Advanced Data Analysis Methods For Communication Research


The Sage Sourcebook Of Advanced Data Analysis Methods For Communication Research
DOWNLOAD
Author : Andrew F. Hayes
language : en
Publisher: SAGE
Release Date : 2008

The Sage Sourcebook Of Advanced Data Analysis Methods For Communication Research written by Andrew F. Hayes and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Language Arts & Disciplines categories.


A must-have volume for every communication researcher's library, The SAGE Sourcebook of Advanced Data Analysis Methods for Communication Research provides an introductory treatment of various advanced statistical methods applied to research in the field of communication. Written by authors who use these methods in their own research, each chapter gives a non-technical overview of what the method is and how it can be used to answer communication-related questions or aide the researcher dealing with difficult data problems. Students and faculty interested in diving into a new statistical topic—such as latent growth modeling, multilevel modeling, propensity scoring, or time series analysis—will find each chapter an excellent springboard for acquiring the background needed to jump into more advanced, technical readings.



Advanced Data Analysis In Neuroscience


Advanced Data Analysis In Neuroscience
DOWNLOAD
Author : Daniel Durstewitz
language : en
Publisher: Springer
Release Date : 2017-09-15

Advanced Data Analysis In Neuroscience written by Daniel Durstewitz and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-15 with Medical categories.


This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanatory frameworks, but become powerful, quantitative data-analytical tools in themselves that enable researchers to look beyond the data surface and unravel underlying mechanisms. Interactive examples of most methods are provided through a package of MatLab routines, encouraging a playful approach to the subject, and providing readers with a better feel for the practical aspects of the methods covered. "Computational neuroscience is essential for integrating and providing a basis for understanding the myriads of remarkable laboratory data on nervous system functions. Daniel Durstewitz has excellently covered the breadth of computational neuroscience from statistical interpretations of data to biophysically based modeling of the neurobiological sources of those data. His presentation is clear, pedagogically sound, and readily useable by experts and beginners alike. It is a pleasure to recommend this very well crafted discussion to experimental neuroscientists as well as mathematically well versed Physicists. The book acts as a window to the issues, to the questions, and to the tools for finding the answers to interesting inquiries about brains and how they function." Henry D. I. Abarbanel Physics and Scripps Institution of Oceanography, University of California, San Diego “This book delivers a clear and thorough introduction to sophisticated analysis approaches useful in computational neuroscience. The models described and the examples provided will help readers develop critical intuitions into what the methods reveal about data. The overall approach of the book reflects the extensive experience Prof. Durstewitz has developed as a leading practitioner of computational neuroscience. “ Bruno B. Averbeck



Advances In Intelligent Data Analysis And Applications


Advances In Intelligent Data Analysis And Applications
DOWNLOAD
Author : Jeng-Shyang Pan
language : en
Publisher:
Release Date : 2022

Advances In Intelligent Data Analysis And Applications written by Jeng-Shyang Pan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.


This book constitutes the Proceeding of the Sixth International Conference on Intelligent Data Analysis and Applications, October 15-18, 2019, Arad, Romania. This edition is technically co-sponsored by "Aurel Vlaicu" University of Arad, Romania, Southwest Jiaotong University, Fujian University of Technology, Chang'an University, Shandong University of Science and Technology, Fujian Provincial Key Lab of Big Data Mining and Applications, and National Demonstration Center for Experimental Electronic Information and Electrical Technology Education (Fujian University of Technology), China, Romanian Academy, and General Association of Engineers in Romania - Arad Section. The book covers a range of topics: Machine Learning, Intelligent Control, Pattern Recognition, Computational Intelligence, Signal Analysis, Modeling and Visualization, Multimedia Sensing and Sensory Systems, Signal control, Imaging and Processing, Information System Security, Cryptography and Cryptanalysis, Databases and Data Mining, Information Hiding, Cloud Computing, Information Retrieval and Integration, Robotics, Control, Agents, Command, Control, Communication and Computers (C4), Swarming Technology, Sensor Technology, Smart cities. The book offers a timely, board snapshot of new development including trends and challenges that are yielding recent research directions in different areas of intelligent data analysis and applications. The book provides useful information to professors, researchers, and graduated students in area of intelligent data analysis and applications. .



Classification Clustering And Data Analysis


Classification Clustering And Data Analysis
DOWNLOAD
Author : Krzystof Jajuga
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Classification Clustering And Data Analysis written by Krzystof Jajuga and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


The present volume contains a selection of papers presented at the Eighth Conference of the International Federation of Classification Societies (IFCS) which was held in Cracow, Poland, July 16-19, 2002. All originally submitted papers were subject to a reviewing process by two independent referees, a procedure which resulted in the selection of the 53 articles presented in this volume. These articles relate to theoretical investigations as well as to practical applications and cover a wide range of topics in the broad domain of classifi cation, data analysis and related methods. If we try to classify the wealth of problems, methods and approaches into some representative (partially over lapping) groups, we find in particular the following areas: • Clustering • Cluster validation • Discrimination • Multivariate data analysis • Statistical methods • Symbolic data analysis • Consensus trees and phylogeny • Regression trees • Neural networks and genetic algorithms • Applications in economics, medicine, biology, and psychology. Given the international orientation of IFCS conferences and the leading role of IFCS in the scientific world of classification, clustering and data anal ysis, this volume collects a representative selection of current research and modern applications in this field and serves as an up-to-date information source for statisticians, data analysts, data mining specialists and computer scientists.



Advanced Data Science And Analytics With Python


Advanced Data Science And Analytics With Python
DOWNLOAD
Author : Jesus Rogel-Salazar
language : en
Publisher: CRC Press
Release Date : 2020-05-05

Advanced Data Science And Analytics With Python written by Jesus Rogel-Salazar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-05 with Business & Economics categories.


Advanced Data Science and Analytics with Python enables data scientists to continue developing their skills and apply them in business as well as academic settings. The subjects discussed in this book are complementary and a follow-up to the topics discussed in Data Science and Analytics with Python. The aim is to cover important advanced areas in data science using tools developed in Python such as SciKit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX and others. The model development is supported by the use of frameworks such as Keras, TensorFlow and Core ML, as well as Swift for the development of iOS and MacOS applications. Features: Targets readers with a background in programming, who are interested in the tools used in data analytics and data science Uses Python throughout Presents tools, alongside solved examples, with steps that the reader can easily reproduce and adapt to their needs Focuses on the practical use of the tools rather than on lengthy explanations Provides the reader with the opportunity to use the book whenever needed rather than following a sequential path The book can be read independently from the previous volume and each of the chapters in this volume is sufficiently independent from the others, providing flexibility for the reader. Each of the topics addressed in the book tackles the data science workflow from a practical perspective, concentrating on the process and results obtained. The implementation and deployment of trained models are central to the book. Time series analysis, natural language processing, topic modelling, social network analysis, neural networks and deep learning are comprehensively covered. The book discusses the need to develop data products and addresses the subject of bringing models to their intended audiences – in this case, literally to the users’ fingertips in the form of an iPhone app. About the Author Dr. Jesús Rogel-Salazar is a lead data scientist in the field, working for companies such as Tympa Health Technologies, Barclays, AKQA, IBM Data Science Studio and Dow Jones. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK.



Advances In Compositional Data Analysis


Advances In Compositional Data Analysis
DOWNLOAD
Author : Peter Filzmoser
language : en
Publisher: Springer Nature
Release Date : 2021-06-01

Advances In Compositional Data Analysis written by Peter Filzmoser and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-01 with Mathematics categories.


This book presents modern methods and real-world applications of compositional data analysis. It covers a wide variety of topics, ranging from an updated presentation of basic concepts and ideas in compositional data analysis to recent advances in the context of complex data structures. Further, it illustrates real-world applications in numerous scientific disciplines and includes references to the latest software solutions available for compositional data analysis, thus providing a valuable and up-to-date guide for researchers and practitioners working with compositional data. Featuring selected contributions by leading experts in the field, the book is dedicated to Vera Pawlowsky-Glahn on the occasion of her 70th birthday.



Advanced Data Analytics With Aws


Advanced Data Analytics With Aws
DOWNLOAD
Author : Joseph Conley
language : en
Publisher: Orange Education Pvt Ltd
Release Date : 2024-04-17

Advanced Data Analytics With Aws written by Joseph Conley and has been published by Orange Education Pvt Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-17 with Computers categories.


Master the Fundamentals of Data Analytics at Scale KEY FEATURES ● Comprehensive guide to constructing data engineering workflows spanning diverse data sources ● Expert techniques for transforming and visualizing data to extract actionable insights ● Advanced methodologies for analyzing data and employing machine learning to uncover intricate patterns DESCRIPTION Embark on a transformative journey into the realm of data analytics with AWS with this practical and incisive handbook. Begin your exploration with an insightful introduction to the fundamentals of data analytics, setting the stage for your AWS adventure. The book then covers collecting data efficiently and effectively on AWS, laying the groundwork for insightful analysis. It will dive deep into processing data, uncovering invaluable techniques to harness the full potential of your datasets. The book will equip you with advanced data analysis skills, unlocking the ability to discern complex patterns and insights. It covers additional use cases for data analysis on AWS, from predictive modeling to sentiment analysis, expanding your analytical horizons. The final section of the book will utilize the power of data virtualization and interaction, revolutionizing the way you engage with and derive value from your data. Gain valuable insights into emerging trends and technologies shaping the future of data analytics, and conclude your journey with actionable next steps, empowering you to continue your data analytics odyssey with confidence. WHAT WILL YOU LEARN ● Construct streamlined data engineering workflows capable of ingesting data from diverse sources and formats. ● Employ data transformation tools to efficiently cleanse and reshape data, priming it for analysis. ● Perform ad-hoc queries for preliminary data exploration, uncovering initial insights. ● Utilize prepared datasets to craft compelling, interactive data visualizations that communicate actionable insights. ● Develop advanced machine learning and Generative AI workflows to delve into intricate aspects of complex datasets, uncovering deeper insights. WHO IS THIS BOOK FOR? This book is ideal for aspiring data engineers, analysts, and data scientists seeking to deepen their understanding and practical skills in data engineering, data transformation, visualization, and advanced analytics. It is also beneficial for professionals and students looking to leverage AWS services for their data-related tasks. TABLE OF CONTENTS 1. Introduction to Data Analytics and AWS 2. Getting Started with AWS 3. Collecting Data with AWS 4. Processing Data on AWS 5. Descriptive Analytics on AWS 6. Advanced Data Analysis on AWS 7. Additional Use Cases for Data Analysis 8. Data Visualization and Interaction on AWS 9. The Future of Data Analytics 10. Conclusion and Next Steps Index



Advances In Data Analysis


Advances In Data Analysis
DOWNLOAD
Author : Christos H. Skiadas
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-11-25

Advances In Data Analysis written by Christos H. Skiadas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-25 with Mathematics categories.


This unified volume is a collection of invited chapters presenting recent developments in the field of data analysis, with applications to reliability and inference, data mining, bioinformatics, lifetime data, and neural networks. The book is a useful reference for graduate students, researchers, and practitioners in statistics, mathematics, engineering, economics, social science, bioengineering, and bioscience.



Advances In Statistical Analysis And Statistical Computing


Advances In Statistical Analysis And Statistical Computing
DOWNLOAD
Author : Roberto S. Mariano
language : en
Publisher: JAI Press(NY)
Release Date : 1989-07

Advances In Statistical Analysis And Statistical Computing written by Roberto S. Mariano and has been published by JAI Press(NY) this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-07 with Mathematics categories.




Advanced Deep Learning Applications In Big Data Analytics


Advanced Deep Learning Applications In Big Data Analytics
DOWNLOAD
Author : Bouarara, Hadj Ahmed
language : en
Publisher: IGI Global
Release Date : 2020-10-16

Advanced Deep Learning Applications In Big Data Analytics written by Bouarara, Hadj Ahmed and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-16 with Computers categories.


Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.