[PDF] Advances In Deep Learning And Computer Vision - eBooks Review

Advances In Deep Learning And Computer Vision


Advances In Deep Learning And Computer Vision
DOWNLOAD

Download Advances In Deep Learning And Computer Vision PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Deep Learning And Computer Vision book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advances In Deep Learning And Computer Vision


Advances In Deep Learning And Computer Vision
DOWNLOAD
Author : Dr. Jagadeesh Kumar
language : en
Publisher: Xoffencerpublication
Release Date : 2024-12-18

Advances In Deep Learning And Computer Vision written by Dr. Jagadeesh Kumar and has been published by Xoffencerpublication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-18 with Computers categories.


Computer Vision (CV) can be defined as “the hypothesis and innovation for building artificial frameworks that acquire data from pictures or multi-dimensional information.” A more straightforward clarification is that computer vision endeavors to take care of similar issues you can unravel with your own one of kind eyes. For instance, in case you're driving and you see a kid run into the street, your mind will rapidly translate the kid in the street in front of you, that it's perilous, and that you ought to quickly brake to abstain from hitting the kid. That is one of the issues self-driving vehicle engineers are presently striving to comprehend by the methods of computer vision. The method requires being competent of realizing object recognition, which can be subdivided into three varieties: object classification, identification, and detection. Object Classification is everywhere you have a little recently learned objects that you need to have the option to perceive in a picture. Characterizing a representation photograph as having individual's face in it is a model object classification, arranged that this photograph contains a face in it. Object Identification is the recognition of a specific instance of an object. For example, being able to identify that there are two faces in an image and that one is John and the other is Sarah is an example of object identification. Object Detection is the ability to identify that there’s an object in an image. This is typically used for things like automatic toll roads where you want to know when a new object has entered the frame so you can take a scan the license plate. Connecting this to the self-driving car problem, if you think to how the human brain would solve this problem, it would have to answer the same questions: In order for the situation to be dangerous, we would have to both identify that there is a child (object) in or approaching the road. Identify that the child in the road is something that we should avoid. You would also want to identify other objects, like trash, soccer ball, bike, etc., where you don’t necessarily need evasive action. In other words, Computer Vision is the field of study that seeks to develop techniques to help computers “see” and understand the content of digital images such as photographs and videos. The problem of computer vision appears simple because it is trivially solved by people, even very young children. Nevertheless, it largely remains an unsolved problem based both on the limited understanding of biological vision and because of the complexity of vision perception in a dynamic and nearly infinitely varying physical world.



Advances In Deep Learning


Advances In Deep Learning
DOWNLOAD
Author : M. Arif Wani
language : en
Publisher: Springer
Release Date : 2019-03-14

Advances In Deep Learning written by M. Arif Wani and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-14 with Computers categories.


This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neural networks. Various deep architecture models and their components are discussed in detail, and subsequently illustrated by algorithms and selected applications. In addition, the book explains in detail the transfer learning approach for faster training of deep models; the approach is also demonstrated on large volumes of fingerprint and face image datasets. In closing, it discusses the unique set of problems and challenges associated with these models.



Advances In Computer Vision


Advances In Computer Vision
DOWNLOAD
Author : Kohei Arai
language : en
Publisher: Springer
Release Date : 2019-04-23

Advances In Computer Vision written by Kohei Arai and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-23 with Computers categories.


This book presents a remarkable collection of chapters covering a wide range of topics in the areas of Computer Vision, both from theoretical and application perspectives. It gathers the proceedings of the Computer Vision Conference (CVC 2019), held in Las Vegas, USA from May 2 to 3, 2019. The conference attracted a total of 371 submissions from pioneering researchers, scientists, industrial engineers, and students all around the world. These submissions underwent a double-blind peer review process, after which 120 (including 7 poster papers) were selected for inclusion in these proceedings. The book’s goal is to reflect the intellectual breadth and depth of current research on computer vision, from classical to intelligent scope. Accordingly, its respective chapters address state-of-the-art intelligent methods and techniques for solving real-world problems, while also outlining future research directions. Topic areas covered include Machine Vision and Learning, Data Science,Image Processing, Deep Learning, and Computer Vision Applications.



Advances In Machine Vision


Advances In Machine Vision
DOWNLOAD
Author : Colin Archibald
language : en
Publisher: World Scientific
Release Date : 1992

Advances In Machine Vision written by Colin Archibald and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992 with Computers categories.


This book describes recent strategies and applications for extracting useful information from sensor data. For example, the methods presented by Roth and Levine are becoming widely accepted as the ?best? way to segment range images, and the neural network methods for Alpha-numeric character recognition, presented by K Yamada, are believed to be the best yet presented. An applied system to analyze the images of dental imprints presented by J C“t‚, et al. is one of several examples of image processing systems that have already been proven to be practical, and can serve as a model for the image processing system designer. Important aspects of the automation of processes are presented in a practical way which can provide immediate new capabilities in fields as diverse as biomedical image processing, document processing, industrial automation, understanding human perception, and the defence industries. The book is organized into sections describing Model Driven Feature Extraction, Data Driven Feature Extraction, Neural Networks, Model Building, and Applications.



Deep Learning In Computer Vision


Deep Learning In Computer Vision
DOWNLOAD
Author : Mahmoud Hassaballah
language : en
Publisher: CRC Press
Release Date : 2020-03-23

Deep Learning In Computer Vision written by Mahmoud Hassaballah and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-23 with Computers categories.


Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.



Deep Learning For Computer Vision


Deep Learning For Computer Vision
DOWNLOAD
Author : Rajalingappaa Shanmugamani
language : en
Publisher: Packt Publishing
Release Date : 2018-01-23

Deep Learning For Computer Vision written by Rajalingappaa Shanmugamani and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-23 with Computers categories.


Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python--and some understanding of machine learning concepts--is required to get the best out of this book.



Advances In Computer Vision


Advances In Computer Vision
DOWNLOAD
Author : Kohei Arai
language : en
Publisher: Springer
Release Date : 2019-04-23

Advances In Computer Vision written by Kohei Arai and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-23 with Computers categories.


This book presents a remarkable collection of chapters covering a wide range of topics in the areas of Computer Vision, both from theoretical and application perspectives. It gathers the proceedings of the Computer Vision Conference (CVC 2019), held in Las Vegas, USA from May 2 to 3, 2019. The conference attracted a total of 371 submissions from pioneering researchers, scientists, industrial engineers, and students all around the world. These submissions underwent a double-blind peer review process, after which 118 (including 7 poster papers) were selected for inclusion in these proceedings. The book’s goal is to reflect the intellectual breadth and depth of current research on computer vision, from classical to intelligent scope. Accordingly, its respective chapters address state-of-the-art intelligent methods and techniques for solving real-world problems, while also outlining future research directions. Topic areas covered include Machine Vision and Learning, Data Science,Image Processing, Deep Learning, and Computer Vision Applications.



Recent Advances In Computer Vision


Recent Advances In Computer Vision
DOWNLOAD
Author : Mahmoud Hassaballah
language : en
Publisher: Springer
Release Date : 2018-12-14

Recent Advances In Computer Vision written by Mahmoud Hassaballah and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-14 with Technology & Engineering categories.


This book presents a collection of high-quality research by leading experts in computer vision and its applications. Each of the 16 chapters can be read independently and discusses the principles of a specific topic, reviews up-to-date techniques, presents outcomes, and highlights the challenges and future directions. As such the book explores the latest trends in fashion creative processes, facial features detection, visual odometry, transfer learning, face recognition, feature description, plankton and scene classification, video face alignment, video searching, and object segmentation. It is intended for postgraduate students, researchers, scholars and developers who are interested in computer vision and connected research disciplines, and is also suitable for senior undergraduate students who are taking advanced courses in related topics. However, it is also provides a valuable reference resource for practitioners from industry who want to keep abreast of recent developments in this dynamic, exciting and profitable research field.



Machine Learning In Computer Vision


Machine Learning In Computer Vision
DOWNLOAD
Author : Nicu Sebe
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-10-04

Machine Learning In Computer Vision written by Nicu Sebe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-10-04 with Computers categories.


The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.



Deep Learning For Vision Systems


Deep Learning For Vision Systems
DOWNLOAD
Author : Mohamed Elgendy
language : en
Publisher: Manning
Release Date : 2020-11-10

Deep Learning For Vision Systems written by Mohamed Elgendy and has been published by Manning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-10 with Computers categories.


How does the computer learn to understand what it sees? Deep Learning for Vision Systems answers that by applying deep learning to computer vision. Using only high school algebra, this book illuminates the concepts behind visual intuition. You'll understand how to use deep learning architectures to build vision system applications for image generation and facial recognition. Summary Computer vision is central to many leading-edge innovations, including self-driving cars, drones, augmented reality, facial recognition, and much, much more. Amazing new computer vision applications are developed every day, thanks to rapid advances in AI and deep learning (DL). Deep Learning for Vision Systems teaches you the concepts and tools for building intelligent, scalable computer vision systems that can identify and react to objects in images, videos, and real life. With author Mohamed Elgendy's expert instruction and illustration of real-world projects, you’ll finally grok state-of-the-art deep learning techniques, so you can build, contribute to, and lead in the exciting realm of computer vision! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology How much has computer vision advanced? One ride in a Tesla is the only answer you’ll need. Deep learning techniques have led to exciting breakthroughs in facial recognition, interactive simulations, and medical imaging, but nothing beats seeing a car respond to real-world stimuli while speeding down the highway. About the book How does the computer learn to understand what it sees? Deep Learning for Vision Systems answers that by applying deep learning to computer vision. Using only high school algebra, this book illuminates the concepts behind visual intuition. You'll understand how to use deep learning architectures to build vision system applications for image generation and facial recognition. What's inside Image classification and object detection Advanced deep learning architectures Transfer learning and generative adversarial networks DeepDream and neural style transfer Visual embeddings and image search About the reader For intermediate Python programmers. About the author Mohamed Elgendy is the VP of Engineering at Rakuten. A seasoned AI expert, he has previously built and managed AI products at Amazon and Twilio. Table of Contents PART 1 - DEEP LEARNING FOUNDATION 1 Welcome to computer vision 2 Deep learning and neural networks 3 Convolutional neural networks 4 Structuring DL projects and hyperparameter tuning PART 2 - IMAGE CLASSIFICATION AND DETECTION 5 Advanced CNN architectures 6 Transfer learning 7 Object detection with R-CNN, SSD, and YOLO PART 3 - GENERATIVE MODELS AND VISUAL EMBEDDINGS 8 Generative adversarial networks (GANs) 9 DeepDream and neural style transfer 10 Visual embeddings