Advances In Deep Learning Artificial Intelligence And Robotics

DOWNLOAD
Download Advances In Deep Learning Artificial Intelligence And Robotics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Deep Learning Artificial Intelligence And Robotics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Advances In Deep Learning Artificial Intelligence And Robotics
DOWNLOAD
Author : Luigi Troiano
language : en
Publisher: Springer Nature
Release Date : 2022-01-03
Advances In Deep Learning Artificial Intelligence And Robotics written by Luigi Troiano and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-03 with Technology & Engineering categories.
This book of Advances in Deep Learning, Artificial Intelligence and Robotics (proceedings of ICDLAIR 2020) is intended to be used as a reference by students and researchers who collect scientific and technical contributions with respect to models, tools, technologies and applications in the field of modern artificial intelligence and robotics. Deep Learning, AI and robotics represent key ingredients for the 4th Industrial Revolution. Their extensive application is dramatically changing products and services, with a large impact on labour, economy and society at all. The research and reports of new technologies and applications in DL, AI and robotics like biometric recognition systems, medical diagnosis, industries, telecommunications, AI petri nets model-based diagnosis, gaming, stock trading, intelligent aerospace systems, robot control and web intelligence aim to bridge the gap between these non-coherent disciplines of knowledge and fosters unified development in next-generation computational models for machine intelligence.
Deep Learning For Robot Perception And Cognition
DOWNLOAD
Author : Alexandros Iosifidis
language : en
Publisher: Academic Press
Release Date : 2022-02-04
Deep Learning For Robot Perception And Cognition written by Alexandros Iosifidis and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-04 with Technology & Engineering categories.
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis
Recent Advances In Robot Learning
DOWNLOAD
Author : Judy A. Franklin
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Recent Advances In Robot Learning written by Judy A. Franklin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation. While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems. Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution. Since robot learning involves decision making, there is an inherent active learning issue. Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data. Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints. These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning. On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution. Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).
Artificial Intelligence For Future Generation Robotics
DOWNLOAD
Author : Rabindra Nath Shaw
language : en
Publisher: Elsevier
Release Date : 2021-06-19
Artificial Intelligence For Future Generation Robotics written by Rabindra Nath Shaw and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-19 with Technology & Engineering categories.
Artificial Intelligence for Future Generation Robotics offers a vision for potential future robotics applications for AI technologies. Each chapter includes theory and mathematics to stimulate novel research directions based on the state-of-the-art in AI and smart robotics. Organized by application into ten chapters, this book offers a practical tool for researchers and engineers looking for new avenues and use-cases that combine AI with smart robotics. As we witness exponential growth in automation and the rapid advancement of underpinning technologies, such as ubiquitous computing, sensing, intelligent data processing, mobile computing and context aware applications, this book is an ideal resource for future innovation. - Brings AI and smart robotics into imaginative, technically-informed dialogue - Integrates fundamentals with real-world applications - Presents potential applications for AI in smart robotics by use-case - Gives detailed theory and mathematical calculations for each application - Stimulates new thinking and research in applying AI to robotics
Developments Of Artificial Intelligence Technologies In Computation And Robotics Proceedings Of The 14th International Flins Conference Flins 2020
DOWNLOAD
Author : Zhong Li
language : en
Publisher: World Scientific
Release Date : 2020-08-04
Developments Of Artificial Intelligence Technologies In Computation And Robotics Proceedings Of The 14th International Flins Conference Flins 2020 written by Zhong Li and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-04 with Technology & Engineering categories.
FLINS, an acronym introduced in 1994 and originally for Fuzzy Logic and Intelligent Technologies in Nuclear Science, is now extended into a well-established international research forum to advance the foundations and applications of computational intelligence for applied research in general and for complex engineering and decision support systems.The principal mission of FLINS is bridging the gap between machine intelligence and real complex systems via joint research between universities and international research institutions, encouraging interdisciplinary research and bringing multidiscipline researchers together.FLINS 2020 is the fourteenth in a series of conferences on computational intelligence systems.
Ai For Emerging Verticals
DOWNLOAD
Author : Muhammad Zeeshan Shakir
language : en
Publisher: Institution of Engineering and Technology
Release Date : 2020-12-04
Ai For Emerging Verticals written by Muhammad Zeeshan Shakir and has been published by Institution of Engineering and Technology this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-04 with Computers categories.
By specializing in a vertical market, companies can better understand their customers and bring more insight to clients in order to become an integral part of their businesses. This approach requires dedicated tools, which is where artificial intelligence (AI) and machine learning (ML) will play a major role. By adopting AI software and services, businesses can create predictive strategies, enhance their capabilities, better interact with customers, and streamline their business processes.
Advances In Artificial Intelligence And Data Engineering
DOWNLOAD
Author : Niranjan N. Chiplunkar
language : en
Publisher: Springer
Release Date : 2021-08-16
Advances In Artificial Intelligence And Data Engineering written by Niranjan N. Chiplunkar and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-16 with Technology & Engineering categories.
This book presents selected peer-reviewed papers from the International Conference on Artificial Intelligence and Data Engineering (AIDE 2019). The topics covered are broadly divided into four groups: artificial intelligence, machine vision and robotics, ambient intelligence, and data engineering. The book discusses recent technological advances in the emerging fields of artificial intelligence, machine learning, robotics, virtual reality, augmented reality, bioinformatics, intelligent systems, cognitive systems, computational intelligence, neural networks, evolutionary computation, speech processing, Internet of Things, big data challenges, data mining, information retrieval, and natural language processing. Given its scope, this book can be useful for students, researchers, and professionals interested in the growing applications of artificial intelligence and data engineering.
Autonomous Robotics And Deep Learning
DOWNLOAD
Author : Vishnu Nath
language : en
Publisher: Springer
Release Date : 2014-05-01
Autonomous Robotics And Deep Learning written by Vishnu Nath and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-01 with Computers categories.
This Springer Brief examines the combination of computer vision techniques and machine learning algorithms necessary for humanoid robots to develop “true consciousness.” It illustrates the critical first step towards reaching “deep learning,” long considered the holy grail for machine learning scientists worldwide. Using the example of the iCub, a humanoid robot which learns to solve 3D mazes, the book explores the challenges to create a robot that can perceive its own surroundings. Rather than relying solely on human programming, the robot uses physical touch to develop a neural map of its environment and learns to change the environment for its own benefit. These techniques allow the iCub to accurately solve any maze, if a solution exists, within a few iterations. With clear analysis of the iCub experiments and its results, this Springer Brief is ideal for advanced level students, researchers and professionals focused on computer vision, AI and machine learning.
Advances In Machine Learning Deep Learning Based Technologies
DOWNLOAD
Author : George A. Tsihrintzis
language : en
Publisher: Springer Nature
Release Date : 2021-08-05
Advances In Machine Learning Deep Learning Based Technologies written by George A. Tsihrintzis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-05 with Technology & Engineering categories.
As the 4th Industrial Revolution is restructuring human societal organization into, so-called, “Society 5.0”, the field of Machine Learning (and its sub-field of Deep Learning) and related technologies is growing continuously and rapidly, developing in both itself and towards applications in many other disciplines. Researchers worldwide aim at incorporating cognitive abilities into machines, such as learning and problem solving. When machines and software systems have been enhanced with Machine Learning/Deep Learning components, they become better and more efficient at performing specific tasks. Consequently, Machine Learning/Deep Learning stands out as a research discipline due to its worldwide pace of growth in both theoretical advances and areas of application, while achieving very high rates of success and promising major impact in science, technology and society. The book at hand aims at exposing its readers to some of the most significant Advances in Machine Learning/Deep Learning-based Technologies. The book consists of an editorial note and an additional ten (10) chapters, all invited from authors who work on the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into five parts, namely (i) Machine Learning/Deep Learning in Socializing and Entertainment, (ii) Machine Learning/Deep Learning in Education, (iii) Machine Learning/Deep Learning in Security, (iv) Machine Learning/Deep Learning in Time Series Forecasting, and (v) Machine Learning in Video Coding and Information Extraction. This research book is directed towards professors, researchers, scientists, engineers and students in Machine Learning/Deep Learning-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent Machine Learning/Deep Learning-based technologies. An extensive list of bibliographic references at the end of each chapter guides the readers to probe further into the application areas of interest to them.