Advances In Principal Component Analysis

DOWNLOAD
Download Advances In Principal Component Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances In Principal Component Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Advances In Principal Component Analysis
DOWNLOAD
Author : Fausto Pedro García Márquez
language : en
Publisher:
Release Date : 2022
Advances In Principal Component Analysis written by Fausto Pedro García Márquez and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Principal components analysis categories.
Advances In Principal Component Analysis
DOWNLOAD
Author : Ganesh R. Naik
language : en
Publisher: Springer
Release Date : 2017-12-11
Advances In Principal Component Analysis written by Ganesh R. Naik and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-11 with Technology & Engineering categories.
This book reports on the latest advances in concepts and further developments of principal component analysis (PCA), addressing a number of open problems related to dimensional reduction techniques and their extensions in detail. Bringing together research results previously scattered throughout many scientific journals papers worldwide, the book presents them in a methodologically unified form. Offering vital insights into the subject matter in self-contained chapters that balance the theory and concrete applications, and especially focusing on open problems, it is essential reading for all researchers and practitioners with an interest in PCA.
Advances In Principal Component Analysis
DOWNLOAD
Author : Fausto Pedro García Márquez
language : en
Publisher: BoD – Books on Demand
Release Date : 2022-08-25
Advances In Principal Component Analysis written by Fausto Pedro García Márquez and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-25 with Computers categories.
This book describes and discusses the use of principal component analysis (PCA) for different types of problems in a variety of disciplines, including engineering, technology, economics, and more. It presents real-world case studies showing how PCA can be applied with other algorithms and methods to solve both large and small and static and dynamic problems. It also examines improvements made to PCA over the years.
Principal Component Analysis
DOWNLOAD
Author : I.T. Jolliffe
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Principal Component Analysis written by I.T. Jolliffe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.
Principal Components Analysis
DOWNLOAD
Author : George H. Dunteman
language : en
Publisher: SAGE
Release Date : 1989-05
Principal Components Analysis written by George H. Dunteman and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-05 with Mathematics categories.
For anyone in need of a concise, introductory guide to principal components analysis, this book is a must. Through an effective use of simple mathematical-geometrical and multiple real-life examples (such as crime statistics, indicators of drug abuse, and educational expenditures) -- and by minimizing the use of matrix algebra -- the reader can quickly master and put this technique to immediate use.
Generalized Principal Component Analysis
DOWNLOAD
Author : René Vidal
language : en
Publisher: Springer
Release Date : 2016-04-11
Generalized Principal Component Analysis written by René Vidal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-11 with Science categories.
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.
Principal Component Analysis Engineering Applications
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2012
Principal Component Analysis Engineering Applications written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.
Independent Component Analysis
DOWNLOAD
Author : Aapo Hyvärinen
language : en
Publisher: John Wiley & Sons
Release Date : 2004-03-22
Independent Component Analysis written by Aapo Hyvärinen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-22 with Science categories.
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.
Hyperspectral Imaging Analysis And Applications For Food Quality
DOWNLOAD
Author : N.C. Basantia
language : en
Publisher: CRC Press
Release Date : 2018-11-16
Hyperspectral Imaging Analysis And Applications For Food Quality written by N.C. Basantia and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-16 with Technology & Engineering categories.
In processing food, hyperspectral imaging, combined with intelligent software, enables digital sorters (or optical sorters) to identify and remove defects and foreign material that are invisible to traditional camera and laser sorters. Hyperspectral Imaging Analysis and Applications for Food Quality explores the theoretical and practical issues associated with the development, analysis, and application of essential image processing algorithms in order to exploit hyperspectral imaging for food quality evaluations. It outlines strategies and essential image processing routines that are necessary for making the appropriate decision during detection, classification, identification, quantification, and/or prediction processes. Features Covers practical issues associated with the development, analysis, and application of essential image processing for food quality applications Surveys the breadth of different image processing approaches adopted over the years in attempting to implement hyperspectral imaging for food quality monitoring Explains the working principles of hyperspectral systems as well as the basic concept and structure of hyperspectral data Describes the different approaches used during image acquisition, data collection, and visualization The book is divided into three sections. Section I discusses the fundamentals of Imaging Systems: How can hyperspectral image cube acquisition be optimized? Also, two chapters deal with image segmentation, data extraction, and treatment. Seven chapters comprise Section II, which deals with Chemometrics. One explains the fundamentals of multivariate analysis and techniques while in six other chapters the reader will find information on and applications of a number of chemometric techniques: principal component analysis, partial least squares analysis, linear discriminant model, support vector machines, decision trees, and artificial neural networks. In the last section, Applications, numerous examples are given of applications of hyperspectral imaging systems in fish, meat, fruits, vegetables, medicinal herbs, dairy products, beverages, and food additives.
Hyperspectral Image Analysis
DOWNLOAD
Author : Saurabh Prasad
language : en
Publisher: Springer
Release Date : 2020-06-09
Hyperspectral Image Analysis written by Saurabh Prasad and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-09 with Computers categories.
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.