[PDF] Advances Of Machine Learning For Knowledge Mining In Electronic Health Records - eBooks Review

Advances Of Machine Learning For Knowledge Mining In Electronic Health Records


Advances Of Machine Learning For Knowledge Mining In Electronic Health Records
DOWNLOAD

Download Advances Of Machine Learning For Knowledge Mining In Electronic Health Records PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advances Of Machine Learning For Knowledge Mining In Electronic Health Records book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advances Of Machine Learning For Knowledge Mining In Electronic Health Records


Advances Of Machine Learning For Knowledge Mining In Electronic Health Records
DOWNLOAD
Author : P. Mohamed Fathimal
language : en
Publisher: CRC Press
Release Date : 2025-03-11

Advances Of Machine Learning For Knowledge Mining In Electronic Health Records written by P. Mohamed Fathimal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-11 with Computers categories.


The book explores the application of cutting-edge machine learning and deep learning algorithms in mining Electronic Health Records (EHR). With the aim of improving patient health management, this book explains the structure of EHR consisting of demographics, medical history, and diagnosis, with a focus on the design and representation of structured, semi-structured, and unstructured data. Explains the design of organized, semi-structured, unstructured, and irregular time series data of electronic health records Covers information extraction, standards for meta-data, reuse of metadata for clinical research, and organized and unstructured data Discusses supervised and unsupervised learning in electronic health records Describes clustering and classification techniques for organized, semi- structured, and unstructured data from electronic health records This book is an essential resource for researchers and professionals in fields like computer science, biomedical engineering, and information technology, seeking to enhance healthcare efficiency, security, and privacy through advanced data analytics and machine learning.



Artificial Intelligence In Healthcare


Artificial Intelligence In Healthcare
DOWNLOAD
Author : Adam Bohr
language : en
Publisher: Academic Press
Release Date : 2020-06-21

Artificial Intelligence In Healthcare written by Adam Bohr and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-21 with Computers categories.


Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data



Clinical Text Mining


Clinical Text Mining
DOWNLOAD
Author : Hercules Dalianis
language : en
Publisher: Springer
Release Date : 2018-05-14

Clinical Text Mining written by Hercules Dalianis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-14 with Computers categories.


This open access book describes the results of natural language processing and machine learning methods applied to clinical text from electronic patient records. It is divided into twelve chapters. Chapters 1-4 discuss the history and background of the original paper-based patient records, their purpose, and how they are written and structured. These initial chapters do not require any technical or medical background knowledge. The remaining eight chapters are more technical in nature and describe various medical classifications and terminologies such as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, and ATC. Chapters 5-10 cover basic tools for natural language processing and information retrieval, and how to apply them to clinical text. The difference between rule-based and machine learning-based methods, as well as between supervised and unsupervised machine learning methods, are also explained. Next, ethical concerns regarding the use of sensitive patient records for research purposes are discussed, including methods for de-identifying electronic patient records and safely storing patient records. The book’s closing chapters present a number of applications in clinical text mining and summarise the lessons learned from the previous chapters. The book provides a comprehensive overview of technical issues arising in clinical text mining, and offers a valuable guide for advanced students in health informatics, computational linguistics, and information retrieval, and for researchers entering these fields.



Prognostics And Health Management Of Electronics


Prognostics And Health Management Of Electronics
DOWNLOAD
Author : Michael G. Pecht
language : en
Publisher: John Wiley & Sons
Release Date : 2018-08-15

Prognostics And Health Management Of Electronics written by Michael G. Pecht and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-15 with Technology & Engineering categories.


An indispensable guide for engineers and data scientists in design, testing, operation, manufacturing, and maintenance A road map to the current challenges and available opportunities for the research and development of Prognostics and Health Management (PHM), this important work covers all areas of electronics and explains how to: assess methods for damage estimation of components and systems due to field loading conditions assess the cost and benefits of prognostic implementations develop novel methods for in situ monitoring of products and systems in actual life-cycle conditions enable condition-based (predictive) maintenance increase system availability through an extension of maintenance cycles and/or timely repair actions; obtain knowledge of load history for future design, qualification, and root cause analysis reduce the occurrence of no fault found (NFF) subtract life-cycle costs of equipment from reduction in inspection costs, downtime, and inventory Prognostics and Health Management of Electronics also explains how to understand statistical techniques and machine learning methods used for diagnostics and prognostics. Using this valuable resource, electrical engineers, data scientists, and design engineers will be able to fully grasp the synergy between IoT, machine learning, and risk assessment.



Disease Prediction Using Machine Learning Deep Learning And Data Analytics


Disease Prediction Using Machine Learning Deep Learning And Data Analytics
DOWNLOAD
Author : Geeta Rani
language : en
Publisher: Bentham Science Publishers
Release Date : 2024-03-07

Disease Prediction Using Machine Learning Deep Learning And Data Analytics written by Geeta Rani and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-07 with Computers categories.


This book is a comprehensive review of technologies and data in healthcare services. It features a compilation of 10 chapters that inform readers about the recent research and developments in this field. Each chapter focuses on a specific aspect of healthcare services, highlighting the potential impact of technology on enhancing practices and outcomes. The main features of the book include 1) referenced contributions from healthcare and data analytics experts, 2) a broad range of topics that cover healthcare services, and 3) demonstration of deep learning techniques for specific diseases. Key topics: - Federated learning in analysis of sensitive healthcare data while preserving privacy and security. - Artificial intelligence for 3-D bone image reconstruction. - Detection of disease severity and creating personalized treatment plans using machine learning and software tools - Case studies for disease detection methods for different disease and conditions, including dementia, asthma, eye diseases - Brain-computer interfaces - Data mining for standardized electronic health records - Data collection, management, and analysis in epidemiological research The book is a resource for learners and professionals in healthcare service training programs and health administration departments. Readership Learners and professionals in healthcare service training programs and health administration departments.



Database Systems For Advanced Applications


Database Systems For Advanced Applications
DOWNLOAD
Author : Yunmook Nah
language : en
Publisher: Springer Nature
Release Date : 2020-09-21

Database Systems For Advanced Applications written by Yunmook Nah and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-21 with Computers categories.


The 4 volume set LNCS 12112-12114 constitutes the papers of the 25th International Conference on Database Systems for Advanced Applications which will be held online in September 2020. The 119 full papers presented together with 19 short papers plus 15 demo papers and 4 industrial papers in this volume were carefully reviewed and selected from a total of 487 submissions. The conference program presents the state-of-the-art R&D activities in database systems and their applications. It provides a forum for technical presentations and discussions among database researchers, developers and users from academia, business and industry.



Trustworthy Artificial Intelligence For Healthcare


Trustworthy Artificial Intelligence For Healthcare
DOWNLOAD
Author : Hao Chen
language : en
Publisher: Springer Nature
Release Date : 2024-08-01

Trustworthy Artificial Intelligence For Healthcare written by Hao Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-01 with Mathematics categories.


This book constitutes the proceedings of Second International Workshop on Trustworthy Artificial Intelligence for Healthcare, TAI4H 2024, held in Jeju, South Korea, in August 2024, in conjunction with the International Joint Conference on Artificial Intelligence, IJCAI 2024. The 13 full papers included in this book were carefully reviewed and selected from 21 submissions. They focus on trustworthy artificial intelligence, healthcare, generalization, explainability, fairness, privacy, multi-modal fusion, foundation models.



Statistics And Machine Learning Methods For Ehr Data


Statistics And Machine Learning Methods For Ehr Data
DOWNLOAD
Author : Hulin Wu
language : en
Publisher: CRC Press
Release Date : 2020-12-10

Statistics And Machine Learning Methods For Ehr Data written by Hulin Wu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-10 with Business & Economics categories.


The use of Electronic Health Records (EHR)/Electronic Medical Records (EMR) data is becoming more prevalent for research. However, analysis of this type of data has many unique complications due to how they are collected, processed and types of questions that can be answered. This book covers many important topics related to using EHR/EMR data for research including data extraction, cleaning, processing, analysis, inference, and predictions based on many years of practical experience of the authors. The book carefully evaluates and compares the standard statistical models and approaches with those of machine learning and deep learning methods and reports the unbiased comparison results for these methods in predicting clinical outcomes based on the EHR data. Key Features: Written based on hands-on experience of contributors from multidisciplinary EHR research projects, which include methods and approaches from statistics, computing, informatics, data science and clinical/epidemiological domains. Documents the detailed experience on EHR data extraction, cleaning and preparation Provides a broad view of statistical approaches and machine learning prediction models to deal with the challenges and limitations of EHR data. Considers the complete cycle of EHR data analysis. The use of EHR/EMR analysis requires close collaborations between statisticians, informaticians, data scientists and clinical/epidemiological investigators. This book reflects that multidisciplinary perspective.



Machine Learning And Knowledge Discovery In Databases Research Track


Machine Learning And Knowledge Discovery In Databases Research Track
DOWNLOAD
Author : Danai Koutra
language : en
Publisher: Springer Nature
Release Date : 2023-09-17

Machine Learning And Knowledge Discovery In Databases Research Track written by Danai Koutra and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-17 with Computers categories.


The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: ​Robustness; Time Series; Transfer and Multitask Learning. Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. ​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.



Advanced Machine Learning Ai And Cybersecurity In Web3 Theoretical Knowledge And Practical Application


Advanced Machine Learning Ai And Cybersecurity In Web3 Theoretical Knowledge And Practical Application
DOWNLOAD
Author : Bouarara, Hadj Ahmed
language : en
Publisher: IGI Global
Release Date : 2024-08-23

Advanced Machine Learning Ai And Cybersecurity In Web3 Theoretical Knowledge And Practical Application written by Bouarara, Hadj Ahmed and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-23 with Computers categories.


In the evolving landscape of Web3, the use of advanced machine learning, artificial intelligence, and cybersecurity transforms industries through theoretical exploration and practical application. The integration of advanced machine learning and AI techniques promises enhanced security protocols, predictive analytics, and adaptive defenses against the increasing number of cyber threats. However, these technological improvements also raise questions regarding privacy, transparency, and the ethical implications of AI-driven security measures. Advanced Machine Learning, AI, and Cybersecurity in Web3: Theoretical Knowledge and Practical Application explores theories and applications of improved technological techniques in Web 3.0. It addresses the challenges inherent to decentralization while harnessing the benefits offered by advances, thereby paving the way for a safer and more advanced digital era. Covering topics such as fraud detection, cryptocurrency, and data management, this book is a useful resource for computer engineers, financial institutions, security and IT professionals, business owners, researchers, scientists, and academicians.