Algebraic Number Theory For Beginners

DOWNLOAD
Download Algebraic Number Theory For Beginners PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algebraic Number Theory For Beginners book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A Brief Guide To Algebraic Number Theory
DOWNLOAD
Author : H. P. F. Swinnerton-Dyer
language : en
Publisher: Cambridge University Press
Release Date : 2001-02-22
A Brief Guide To Algebraic Number Theory written by H. P. F. Swinnerton-Dyer and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-02-22 with Mathematics categories.
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Algebraic Number Theory
DOWNLOAD
Author : Jürgen Neukirch
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Algebraic Number Theory written by Jürgen Neukirch and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
From the review: "The present book has as its aim to resolve a discrepancy in the textbook literature and ... to provide a comprehensive introduction to algebraic number theory which is largely based on the modern, unifying conception of (one-dimensional) arithmetic algebraic geometry. ... Despite this exacting program, the book remains an introduction to algebraic number theory for the beginner... The author discusses the classical concepts from the viewpoint of Arakelov theory.... The treatment of class field theory is ... particularly rich in illustrating complements, hints for further study, and concrete examples.... The concluding chapter VII on zeta-functions and L-series is another outstanding advantage of the present textbook.... The book is, without any doubt, the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available." W. Kleinert in: Zentralblatt für Mathematik, 1992
Algebraic Number Theory And Fermat S Last Theorem
DOWNLOAD
Author : Ian Stewart
language : en
Publisher: CRC Press
Release Date : 2001-12-12
Algebraic Number Theory And Fermat S Last Theorem written by Ian Stewart and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-12-12 with Mathematics categories.
First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it
Algebraic Number Theory
DOWNLOAD
Author : Frazer Jarvis
language : en
Publisher: Springer
Release Date : 2014-06-23
Algebraic Number Theory written by Frazer Jarvis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-23 with Mathematics categories.
This undergraduate textbook provides an approachable and thorough introduction to the topic of algebraic number theory, taking the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the first time that the number field sieve has been considered in a textbook at this level.
A Conversational Introduction To Algebraic Number Theory
DOWNLOAD
Author : Paul Pollack
language : en
Publisher: American Mathematical Soc.
Release Date : 2017-08-01
A Conversational Introduction To Algebraic Number Theory written by Paul Pollack and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-01 with Mathematics categories.
Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.
A Course In Algebraic Number Theory
DOWNLOAD
Author : Robert B. Ash
language : en
Publisher: Courier Corporation
Release Date : 2010-01-01
A Course In Algebraic Number Theory written by Robert B. Ash and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-01 with Mathematics categories.
This text for a graduate-level course covers the general theory of factorization of ideals in Dedekind domains as well as the number field case. It illustrates the use of Kummer's theorem, proofs of the Dirichlet unit theorem, and Minkowski bounds on element and ideal norms. 2003 edition.
Algebraic Number Theory
DOWNLOAD
Author : Serge Lang
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Algebraic Number Theory written by Serge Lang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.
The present book gives an exposition of the classical basic algebraic and analytic number theory and supersedes my Algebraic Numbers, including much more material, e. g. the class field theory on which 1 make further comments at the appropriate place later. For different points of view, the reader is encouraged to read the collec tion of papers from the Brighton Symposium (edited by Cassels-Frohlich), the Artin-Tate notes on class field theory, Weil's book on Basic Number Theory, Borevich-Shafarevich's Number Theory, and also older books like those of W eber, Hasse, Hecke, and Hilbert's Zahlbericht. It seems that over the years, everything that has been done has proved useful, theo retically or as examples, for the further development of the theory. Old, and seemingly isolated special cases have continuously acquired renewed significance, often after half a century or more. The point of view taken here is principally global, and we deal with local fields only incidentally. For a more complete treatment of these, cf. Serre's book Corps Locaux. There is much to be said for a direct global approach to number fields. Stylistically, 1 have intermingled the ideal and idelic approaches without prejudice for either. 1 also include two proofs of the functional equation for the zeta function, to acquaint the reader with different techniques (in some sense equivalent, but in another sense, suggestive of very different moods).
Problems In Algebraic Number Theory
DOWNLOAD
Author : M. Ram Murty
language : en
Publisher: Springer Science & Business Media
Release Date : 2005
Problems In Algebraic Number Theory written by M. Ram Murty and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.
The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved
The Theory Of Algebraic Number Fields
DOWNLOAD
Author : David Hilbert
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
The Theory Of Algebraic Number Fields written by David Hilbert and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
Constance Reid, in Chapter VII of her book Hilbert, tells the story of the writing of the Zahlbericht, as his report entitled Die Theorie der algebra is chen Zahlkorper has always been known. At its annual meeting in 1893 the Deutsche Mathematiker-Vereinigung (the German Mathematical Society) invited Hilbert and Minkowski to prepare a report on the current state of affairs in the theory of numbers, to be completed in two years. The two mathematicians agreed that Minkowski should write about rational number theory and Hilbert about algebraic number theory. Although Hilbert had almost completed his share of the report by the beginning of 1896 Minkowski had made much less progress and it was agreed that he should withdraw from his part of the project. Shortly afterwards Hilbert finished writing his report on algebraic number fields and the manuscript, carefully copied by his wife, was sent to the printers. The proofs were read by Minkowski, aided in part by Hurwitz, slowly and carefully, with close attention to the mathematical exposition as well as to the type-setting; at Minkowski's insistence Hilbert included a note of thanks to his wife. As Constance Reid writes, "The report on algebraic number fields exceeded in every way the expectation of the members of the Mathemati cal Society. They had asked for a summary of the current state of affairs in the theory. They received a masterpiece, which simply and clearly fitted all the difficult developments of recent times into an elegantly integrated theory.
A Course In Computational Algebraic Number Theory
DOWNLOAD
Author : Henri Cohen
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
A Course In Computational Algebraic Number Theory written by Henri Cohen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
With the advent of powerful computing tools and numerous advances in math ematics, computer science and cryptography, algorithmic number theory has become an important subject in its own right. Both external and internal pressures gave a powerful impetus to the development of more powerful al gorithms. These in turn led to a large number of spectacular breakthroughs. To mention but a few, the LLL algorithm which has a wide range of appli cations, including real world applications to integer programming, primality testing and factoring algorithms, sub-exponential class group and regulator algorithms, etc ... Several books exist which treat parts of this subject. (It is essentially impossible for an author to keep up with the rapid pace of progress in all areas of this subject.) Each book emphasizes a different area, corresponding to the author's tastes and interests. The most famous, but unfortunately the oldest, is Knuth's Art of Computer Programming, especially Chapter 4. The present book has two goals. First, to give a reasonably comprehensive introductory course in computational number theory. In particular, although we study some subjects in great detail, others are only mentioned, but with suitable pointers to the literature. Hence, we hope that this book can serve as a first course on the subject. A natural sequel would be to study more specialized subjects in the existing literature.