A Course In Computational Algebraic Number Theory

DOWNLOAD
Download A Course In Computational Algebraic Number Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Course In Computational Algebraic Number Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A Course In Computational Algebraic Number Theory
DOWNLOAD
Author : Henri Cohen
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
A Course In Computational Algebraic Number Theory written by Henri Cohen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
With the advent of powerful computing tools and numerous advances in math ematics, computer science and cryptography, algorithmic number theory has become an important subject in its own right. Both external and internal pressures gave a powerful impetus to the development of more powerful al gorithms. These in turn led to a large number of spectacular breakthroughs. To mention but a few, the LLL algorithm which has a wide range of appli cations, including real world applications to integer programming, primality testing and factoring algorithms, sub-exponential class group and regulator algorithms, etc ... Several books exist which treat parts of this subject. (It is essentially impossible for an author to keep up with the rapid pace of progress in all areas of this subject.) Each book emphasizes a different area, corresponding to the author's tastes and interests. The most famous, but unfortunately the oldest, is Knuth's Art of Computer Programming, especially Chapter 4. The present book has two goals. First, to give a reasonably comprehensive introductory course in computational number theory. In particular, although we study some subjects in great detail, others are only mentioned, but with suitable pointers to the literature. Hence, we hope that this book can serve as a first course on the subject. A natural sequel would be to study more specialized subjects in the existing literature.
A Course In Computational Algebraic Number Theory
DOWNLOAD
Author : Henri Cohen
language : en
Publisher: Copernicus
Release Date : 1993
A Course In Computational Algebraic Number Theory written by Henri Cohen and has been published by Copernicus this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Mathematics categories.
Describes 148 algorithms that are fundamental for number-theoretic computations including computations related to algebraic number theory, elliptic curves, primality testing, and factoring. A complete theoretical introduction is given for each subject, reducing prerequisites to a minimum. The detailed description of each algorithm allows immediate.
Advanced Topics In Computational Number Theory
DOWNLOAD
Author : Henri Cohen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-10-29
Advanced Topics In Computational Number Theory written by Henri Cohen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-29 with Mathematics categories.
The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields.
Algorithmic Algebraic Number Theory
DOWNLOAD
Author : M. Pohst
language : en
Publisher: Cambridge University Press
Release Date : 1997-09-25
Algorithmic Algebraic Number Theory written by M. Pohst and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-09-25 with Mathematics categories.
Now in paperback, this classic book is addresssed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction an make the user familliar with recent research in the field. For experimental number theoreticians new methods are developed and new results are obtained which are of great importance for them. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.
A Brief Guide To Algebraic Number Theory
DOWNLOAD
Author : H. P. F. Swinnerton-Dyer
language : en
Publisher: Cambridge University Press
Release Date : 2001-02-22
A Brief Guide To Algebraic Number Theory written by H. P. F. Swinnerton-Dyer and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-02-22 with Mathematics categories.
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Computational Number Theory
DOWNLOAD
Author : Abhijit Das
language : en
Publisher: CRC Press
Release Date : 2013-03-18
Computational Number Theory written by Abhijit Das and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-18 with Computers categories.
Developed from the author’s popular graduate-level course, Computational Number Theory presents a complete treatment of number-theoretic algorithms. Avoiding advanced algebra, this self-contained text is designed for advanced undergraduate and beginning graduate students in engineering. It is also suitable for researchers new to the field and practitioners of cryptography in industry. Requiring no prior experience with number theory or sophisticated algebraic tools, the book covers many computational aspects of number theory and highlights important and interesting engineering applications. It first builds the foundation of computational number theory by covering the arithmetic of integers and polynomials at a very basic level. It then discusses elliptic curves, primality testing, algorithms for integer factorization, computing discrete logarithms, and methods for sparse linear systems. The text also shows how number-theoretic tools are used in cryptography and cryptanalysis. A dedicated chapter on the application of number theory in public-key cryptography incorporates recent developments in pairing-based cryptography. With an emphasis on implementation issues, the book uses the freely available number-theory calculator GP/PARI to demonstrate complex arithmetic computations. The text includes numerous examples and exercises throughout and omits lengthy proofs, making the material accessible to students and practitioners.
Algebraic Number Theory And Fermat S Last Theorem
DOWNLOAD
Author : Ian Stewart
language : en
Publisher: CRC Press
Release Date : 2001-12-12
Algebraic Number Theory And Fermat S Last Theorem written by Ian Stewart and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-12-12 with Mathematics categories.
First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it
Number Fields
DOWNLOAD
Author : Daniel A. Marcus
language : en
Publisher: Springer
Release Date : 2018-07-05
Number Fields written by Daniel A. Marcus and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-05 with Mathematics categories.
Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
Computational Algebra Course And Exercises With Solutions
DOWNLOAD
Author : Ihsen Yengui
language : en
Publisher: World Scientific
Release Date : 2021-05-17
Computational Algebra Course And Exercises With Solutions written by Ihsen Yengui and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-17 with Mathematics categories.
This book intends to provide material for a graduate course on computational commutative algebra and algebraic geometry, highlighting potential applications in cryptography. Also, the topics in this book could form the basis of a graduate course that acts as a segue between an introductory algebra course and the more technical topics of commutative algebra and algebraic geometry.This book contains a total of 124 exercises with detailed solutions as well as an important number of examples that illustrate definitions, theorems, and methods. This is very important for students or researchers who are not familiar with the topics discussed. Experience has shown that beginners who want to take their first steps in algebraic geometry are usually discouraged by the difficulty of the proposed exercises and the absence of detailed answers. Therefore, exercises (and their solutions) as well as examples occupy a prominent place in this course.This book is not designed as a comprehensive reference work, but rather as a selective textbook. The many exercises with detailed answers make it suitable for use in both a math or computer science course.
Ideals Varieties And Algorithms
DOWNLOAD
Author : David Cox
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Ideals Varieties And Algorithms written by David Cox and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
We wrote this book to introduce undergraduates to some interesting ideas in algebraic geometry and commutative algebra. Until recently, these topics involved a lot of abstract mathematics and were only taught in graduate school. But in the 1960's, Buchberger and Hironaka discovered new algorithms for manipulating systems of polynomial equations. Fueled by the development of computers fast enough to run these algorithms, the last two decades have seen a minor revolution in commutative algebra. The ability to compute efficiently with polynomial equations has made it possible to investigate complicated examples that would be impossible to do by hand, and has changed the practice of much research in algebraic geometry. This has also enhanced the importance of the subject for computer scientists and engineers, who have begun to use these techniques in a whole range of problems. It is our belief that the growing importance of these computational techniques warrants their introduction into the undergraduate (and graduate) mathematics curricu lum. Many undergraduates enjoy the concrete, almost nineteenth century, flavor that a computational emphasis brings to the subject. At the same time, one can do some substantial mathematics, including the Hilbert Basis Theorem, Elimination Theory and the Nullstellensatz. The mathematical prerequisites of the book are modest: the students should have had a course in linear algebra and a course where they learned how to do proofs. Examples of the latter sort of course include discrete math and abstract algebra.