[PDF] Algorithmic Algebraic Number Theory - eBooks Review

Algorithmic Algebraic Number Theory


Algorithmic Algebraic Number Theory
DOWNLOAD

Download Algorithmic Algebraic Number Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algorithmic Algebraic Number Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Algorithmic Algebraic Number Theory


Algorithmic Algebraic Number Theory
DOWNLOAD
Author : M. Pohst
language : en
Publisher: Cambridge University Press
Release Date : 1997-09-25

Algorithmic Algebraic Number Theory written by M. Pohst and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-09-25 with Mathematics categories.


Now in paperback, this classic book is addresssed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction an make the user familliar with recent research in the field. For experimental number theoreticians new methods are developed and new results are obtained which are of great importance for them. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.



A Course In Computational Algebraic Number Theory


A Course In Computational Algebraic Number Theory
DOWNLOAD
Author : Henri Cohen
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17

A Course In Computational Algebraic Number Theory written by Henri Cohen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.


With the advent of powerful computing tools and numerous advances in math ematics, computer science and cryptography, algorithmic number theory has become an important subject in its own right. Both external and internal pressures gave a powerful impetus to the development of more powerful al gorithms. These in turn led to a large number of spectacular breakthroughs. To mention but a few, the LLL algorithm which has a wide range of appli cations, including real world applications to integer programming, primality testing and factoring algorithms, sub-exponential class group and regulator algorithms, etc ... Several books exist which treat parts of this subject. (It is essentially impossible for an author to keep up with the rapid pace of progress in all areas of this subject.) Each book emphasizes a different area, corresponding to the author's tastes and interests. The most famous, but unfortunately the oldest, is Knuth's Art of Computer Programming, especially Chapter 4. The present book has two goals. First, to give a reasonably comprehensive introductory course in computational number theory. In particular, although we study some subjects in great detail, others are only mentioned, but with suitable pointers to the literature. Hence, we hope that this book can serve as a first course on the subject. A natural sequel would be to study more specialized subjects in the existing literature.



Algorithmic Algebra


Algorithmic Algebra
DOWNLOAD
Author : Bhubaneswar Mishra
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Algorithmic Algebra written by Bhubaneswar Mishra and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


Algorithmic Algebra studies some of the main algorithmic tools of computer algebra, covering such topics as Gröbner bases, characteristic sets, resultants and semialgebraic sets. The main purpose of the book is to acquaint advanced undergraduate and graduate students in computer science, engineering and mathematics with the algorithmic ideas in computer algebra so that they could do research in computational algebra or understand the algorithms underlying many popular symbolic computational systems: Mathematica, Maple or Axiom, for instance. Also, researchers in robotics, solid modeling, computational geometry and automated theorem proving community may find it useful as symbolic algebraic techniques have begun to play an important role in these areas. The book, while being self-contained, is written at an advanced level and deals with the subject at an appropriate depth. The book is accessible to computer science students with no previous algebraic training. Some mathematical readers, on the other hand, may find it interesting to see how algorithmic constructions have been used to provide fresh proofs for some classical theorems. The book also contains a large number of exercises with solutions to selected exercises, thus making it ideal as a textbook or for self-study.



A Brief Guide To Algebraic Number Theory


A Brief Guide To Algebraic Number Theory
DOWNLOAD
Author : H. P. F. Swinnerton-Dyer
language : en
Publisher: Cambridge University Press
Release Date : 2001-02-22

A Brief Guide To Algebraic Number Theory written by H. P. F. Swinnerton-Dyer and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-02-22 with Mathematics categories.


Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.



Computational Algebra And Number Theory


Computational Algebra And Number Theory
DOWNLOAD
Author : Wieb Bosma
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Computational Algebra And Number Theory written by Wieb Bosma and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.



Algorithms In Real Algebraic Geometry


Algorithms In Real Algebraic Geometry
DOWNLOAD
Author : Saugata Basu
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-04-21

Algorithms In Real Algebraic Geometry written by Saugata Basu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-21 with Mathematics categories.


The algorithmic problems of real algebraic geometry such as real root counting, deciding the existence of solutions of systems of polynomial equations and inequalities, finding global maxima or deciding whether two points belong in the same connected component of a semi-algebraic set appear frequently in many areas of science and engineering. In this textbook the main ideas and techniques presented form a coherent and rich body of knowledge. Mathematicians will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. Being self-contained the book is accessible to graduate students and even, for invaluable parts of it, to undergraduate students. This second edition contains several recent results, on discriminants of symmetric matrices, real root isolation, global optimization, quantitative results on semi-algebraic sets and the first single exponential algorithm computing their first Betti number.



Algorithmic Algebraic Number Theory


Algorithmic Algebraic Number Theory
DOWNLOAD
Author : Michael Pohst
language : en
Publisher:
Release Date : 1989

Algorithmic Algebraic Number Theory written by Michael Pohst and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989 with Algebraische Zahlentheorie categories.




Algorithmic Algebraic Number Theory


Algorithmic Algebraic Number Theory
DOWNLOAD
Author : M. Pohst
language : en
Publisher:
Release Date : 1989

Algorithmic Algebraic Number Theory written by M. Pohst and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989 with Algebraic number theory categories.




Ideals Varieties And Algorithms


Ideals Varieties And Algorithms
DOWNLOAD
Author : David Cox
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17

Ideals Varieties And Algorithms written by David Cox and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.


We wrote this book to introduce undergraduates to some interesting ideas in algebraic geometry and commutative algebra. Until recently, these topics involved a lot of abstract mathematics and were only taught in graduate school. But in the 1960's, Buchberger and Hironaka discovered new algorithms for manipulating systems of polynomial equations. Fueled by the development of computers fast enough to run these algorithms, the last two decades have seen a minor revolution in commutative algebra. The ability to compute efficiently with polynomial equations has made it possible to investigate complicated examples that would be impossible to do by hand, and has changed the practice of much research in algebraic geometry. This has also enhanced the importance of the subject for computer scientists and engineers, who have begun to use these techniques in a whole range of problems. It is our belief that the growing importance of these computational techniques warrants their introduction into the undergraduate (and graduate) mathematics curricu lum. Many undergraduates enjoy the concrete, almost nineteenth century, flavor that a computational emphasis brings to the subject. At the same time, one can do some substantial mathematics, including the Hilbert Basis Theorem, Elimination Theory and the Nullstellensatz. The mathematical prerequisites of the book are modest: the students should have had a course in linear algebra and a course where they learned how to do proofs. Examples of the latter sort of course include discrete math and abstract algebra.