Algorithmic High Dimensional Robust Statistics

DOWNLOAD
Download Algorithmic High Dimensional Robust Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algorithmic High Dimensional Robust Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Algorithmic High Dimensional Robust Statistics
DOWNLOAD
Author : Ilias Diakonikolas
language : en
Publisher: Cambridge University Press
Release Date : 2023-09-07
Algorithmic High Dimensional Robust Statistics written by Ilias Diakonikolas and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-07 with Computers categories.
This book presents general principles and scalable methodologies to deal with adversarial outliers in high-dimensional datasets.
Beyond The Worst Case Analysis Of Algorithms
DOWNLOAD
Author : Tim Roughgarden
language : en
Publisher: Cambridge University Press
Release Date : 2021-01-14
Beyond The Worst Case Analysis Of Algorithms written by Tim Roughgarden and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-14 with Computers categories.
Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.
Web And Big Data
DOWNLOAD
Author : Wenjie Zhang
language : en
Publisher: Springer Nature
Release Date : 2024-08-27
Web And Big Data written by Wenjie Zhang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-27 with Computers categories.
The five-volume set LNCS 14961, 14962, 14963, 14964 and 14965 constitutes the refereed conference proceedings of the 8th International Joint Conference on Web and Big Data, APWeb-WAIM 2024, held in Jinhua, China, during August 30–September 1, 2024. The 171 full papers presented in these proceedings were carefully reviewed and selected from 558 submissions. The papers are organized in the following topical sections: Volume I: Natural language processing, Generative AI and LLM, Computer Vision and Recommender System. Volume II: Recommender System, Knowledge Graph and Spatial and Temporal Data. Volume III: Spatial and Temporal Data, Graph Neural Network, Graph Mining and Database System and Query Optimization. Volume IV: Database System and Query Optimization, Federated and Privacy-Preserving Learning, Network, Blockchain and Edge computing, Anomaly Detection and Security Volume V: Anomaly Detection and Security, Information Retrieval, Machine Learning, Demonstration Paper and Industry Paper.
Iot For Defense And National Security
DOWNLOAD
Author : Robert Douglass
language : en
Publisher: John Wiley & Sons
Release Date : 2023-01-25
Iot For Defense And National Security written by Robert Douglass and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-25 with Political Science categories.
IoT for Defense and National Security Practical case-based guide illustrating the challenges and solutions of adopting IoT in both secure and hostile environments IoT for Defense and National Security covers topics on IoT security, architecture, robotics, sensing, policy, operations, and more, including the latest results from the premier IoT research initiative of the U.S. Defense Department, the Internet of Battle Things. The text also discusses challenges in converting defense industrial operations to IoT and summarizes policy recommendations for regulating government use of IoT in free societies. As a modern reference, this book covers multiple technologies in IoT including survivable tactical IoT using content-based routing, mobile ad-hoc networks, and electronically formed beams. Examples of IoT architectures include using KepServerEX for edge connectivity and AWS IoT Core and Amazon S3 for IoT data. To aid in reader comprehension, the text uses case studies illustrating the challenges and solutions for using robotic devices in defense applications, plus case studies on using IoT for a defense industrial base. Written by leading researchers and practitioners of IoT technology for defense and national security, IoT for Defense and National Security also includes information on: Changes in warfare driven by IoT weapons, logistics, and systems IoT resource allocation (monitoring existing resources and reallocating them in response to adversarial actions) Principles of AI-enabled processing for Internet of Battlefield Things, including machine learning and inference Vulnerabilities in tactical IoT communications, networks, servers and architectures, and strategies for securing them Adapting rapidly expanding commercial IoT to power IoT for defense For application engineers from defense-related companies as well as managers, policy makers, and academics, IoT for Defense and National Security is a one-of-a-kind resource, providing expansive coverage of an important yet sensitive topic that is often shielded from the public due to classified or restricted distributions.
Principles And Methods Of Explainable Artificial Intelligence In Healthcare
DOWNLOAD
Author : Albuquerque, Victor Hugo C. de
language : en
Publisher: IGI Global
Release Date : 2022-05-20
Principles And Methods Of Explainable Artificial Intelligence In Healthcare written by Albuquerque, Victor Hugo C. de and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-20 with Computers categories.
Explainable artificial intelligence is proficient in operating and analyzing the unconstrainted environment in fields like robotic medicine, robotic treatment, and robotic surgery, which rely on computational vision for analyzing complex situations. Explainable artificial intelligence is a well-structured customizable technology that makes it possible to generate promising unbiased outcomes. The model’s adaptability facilitates the management of heterogeneous healthcare data and the visualization of biological structures through virtual reality. Explainable artificial intelligence has newfound applications in the healthcare industry, such as clinical trial matching, continuous healthcare monitoring, probabilistic evolutions, and evidence-based mechanisms. Principles and Methods of Explainable Artificial Intelligence in Healthcare discusses explainable artificial intelligence and its applications in healthcare, providing a broad overview of state-of-the-art approaches for accurate analysis and diagnosis. The book also encompasses computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, and medical imaging data that assist in earlier prediction. Covering topics such as neural networks and disease detection, this reference work is ideal for industry professionals, practitioners, academicians, researchers, scholars, instructors, and students.
Engineering Mathematics And Artificial Intelligence
DOWNLOAD
Author : Herb Kunze
language : en
Publisher: CRC Press
Release Date : 2023-07-26
Engineering Mathematics And Artificial Intelligence written by Herb Kunze and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-26 with Technology & Engineering categories.
The fields of Artificial Intelligence (AI) and Machine Learning (ML) have grown dramatically in recent years, with an increasingly impressive spectrum of successful applications. This book represents a key reference for anybody interested in the intersection between mathematics and AI/ML and provides an overview of the current research streams. Engineering Mathematics and Artificial Intelligence: Foundations, Methods, and Applications discusses the theory behind ML and shows how mathematics can be used in AI. The book illustrates how to improve existing algorithms by using advanced mathematics and offers cutting-edge AI technologies. The book goes on to discuss how ML can support mathematical modeling and how to simulate data by using artificial neural networks. Future integration between ML and complex mathematical techniques is also highlighted within the book. This book is written for researchers, practitioners, engineers, and AI consultants.
Introduction To High Dimensional Statistics
DOWNLOAD
Author : Christophe Giraud
language : en
Publisher: CRC Press
Release Date : 2021-08-25
Introduction To High Dimensional Statistics written by Christophe Giraud and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-25 with Computers categories.
Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.
Statistical Foundations Of Data Science
DOWNLOAD
Author : Jianqing Fan
language : en
Publisher: CRC Press
Release Date : 2020-09-21
Statistical Foundations Of Data Science written by Jianqing Fan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-21 with Mathematics categories.
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Foundations Of Data Science
DOWNLOAD
Author : Avrim Blum
language : en
Publisher: Cambridge University Press
Release Date : 2020-01-23
Foundations Of Data Science written by Avrim Blum and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-23 with Computers categories.
Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.
Robust Statistics
DOWNLOAD
Author : Ricardo A. Maronna
language : en
Publisher: John Wiley & Sons
Release Date : 2019-01-04
Robust Statistics written by Ricardo A. Maronna and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-04 with Mathematics categories.
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.