[PDF] An Introduction To Bayesian Scientific Computing - eBooks Review

An Introduction To Bayesian Scientific Computing


An Introduction To Bayesian Scientific Computing
DOWNLOAD

Download An Introduction To Bayesian Scientific Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Bayesian Scientific Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



An Introduction To Bayesian Scientific Computing


An Introduction To Bayesian Scientific Computing
DOWNLOAD
Author : Daniela Calvetti
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-11-20

An Introduction To Bayesian Scientific Computing written by Daniela Calvetti and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-20 with Computers categories.


This book has been written for undergraduate and graduate students in various disciplines of mathematics. The authors, internationally recognized experts in their field, have developed a superior teaching and learning tool that makes it easy to grasp new concepts and apply them in practice. The book’s highly accessible approach makes it particularly ideal if you want to become acquainted with the Bayesian approach to computational science, but do not need to be fully immersed in detailed statistical analysis.



Bayesian Scientific Computing


Bayesian Scientific Computing
DOWNLOAD
Author : Daniela Calvetti
language : en
Publisher: Springer Nature
Release Date : 2023-03-09

Bayesian Scientific Computing written by Daniela Calvetti and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-09 with Computers categories.


The once esoteric idea of embedding scientific computing into a probabilistic framework, mostly along the lines of the Bayesian paradigm, has recently enjoyed wide popularity and found its way into numerous applications. This book provides an insider’s view of how to combine two mature fields, scientific computing and Bayesian inference, into a powerful language leveraging the capabilities of both components for computational efficiency, high resolution power and uncertainty quantification ability. The impact of Bayesian scientific computing has been particularly significant in the area of computational inverse problems where the data are often scarce or of low quality, but some characteristics of the unknown solution may be available a priori. The ability to combine the flexibility of the Bayesian probabilistic framework with efficient numerical methods has contributed to the popularity of Bayesian inversion, with the prior distribution being the counterpart of classical regularization. However, the interplay between Bayesian inference and numerical analysis is much richer than providing an alternative way to regularize inverse problems, as demonstrated by the discussion of time dependent problems, iterative methods, and sparsity promoting priors in this book. The quantification of uncertainty in computed solutions and model predictions is another area where Bayesian scientific computing plays a critical role. This book demonstrates that Bayesian inference and scientific computing have much more in common than what one may expect, and gradually builds a natural interface between these two areas.



Bayesian Ideas And Data Analysis


Bayesian Ideas And Data Analysis
DOWNLOAD
Author : Ronald Christensen
language : en
Publisher: CRC Press
Release Date : 2010-07-02

Bayesian Ideas And Data Analysis written by Ronald Christensen and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-02 with Mathematics categories.


Emphasizing the use of WinBUGS and R to analyze real data, Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians presents statistical tools to address scientific questions. It highlights foundational issues in statistics, the importance of making accurate predictions, and the need for scientists and statisticians to col



Introduction To Bayesian Statistics


Introduction To Bayesian Statistics
DOWNLOAD
Author : Karl-Rudolf Koch
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-08

Introduction To Bayesian Statistics written by Karl-Rudolf Koch and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-08 with Science categories.


This book presents Bayes’ theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters. It does so in a simple manner that is easy to comprehend. The book compares traditional and Bayesian methods with the rules of probability presented in a logical way allowing an intuitive understanding of random variables and their probability distributions to be formed.



Bayesian Computation With R


Bayesian Computation With R
DOWNLOAD
Author : Jim Albert
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-07

Bayesian Computation With R written by Jim Albert and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-07 with Computers categories.


Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. Early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling.



Numerical Methods For Inverse Problems


Numerical Methods For Inverse Problems
DOWNLOAD
Author : Michel Kern
language : en
Publisher: John Wiley & Sons
Release Date : 2016-03-31

Numerical Methods For Inverse Problems written by Michel Kern and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-31 with Mathematics categories.


This book studies methods to concretely address inverse problems. An inverse problem arises when the causes that produced a given effect must be determined or when one seeks to indirectly estimate the parameters of a physical system. The author uses practical examples to illustrate inverse problems in physical sciences. He presents the techniques and specific methods chosen to solve inverse problems in a general domain of application, choosing to focus on a small number of methods that can be used in most applications. This book is aimed at readers with a mathematical and scientific computing background. Despite this, it is a book with a practical perspective. The methods described are applicable, have been applied, and are often illustrated by numerical examples.



Bayesian Modeling And Computation In Python


Bayesian Modeling And Computation In Python
DOWNLOAD
Author : Osvaldo A. Martin
language : en
Publisher: CRC Press
Release Date : 2021-12-28

Bayesian Modeling And Computation In Python written by Osvaldo A. Martin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-28 with Computers categories.


Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics. This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.



An Introduction To Data Analysis And Uncertainty Quantification For Inverse Problems


An Introduction To Data Analysis And Uncertainty Quantification For Inverse Problems
DOWNLOAD
Author : Luis Tenorio
language : en
Publisher: SIAM
Release Date : 2017-07-06

An Introduction To Data Analysis And Uncertainty Quantification For Inverse Problems written by Luis Tenorio and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-06 with Mathematics categories.


Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.



Computational Uncertainty Quantification For Inverse Problems


Computational Uncertainty Quantification For Inverse Problems
DOWNLOAD
Author : Johnathan M. Bardsley
language : en
Publisher: SIAM
Release Date : 2018-08-01

Computational Uncertainty Quantification For Inverse Problems written by Johnathan M. Bardsley and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-01 with Science categories.


This book is an introduction to both computational inverse problems and uncertainty quantification (UQ) for inverse problems. The book also presents more advanced material on Bayesian methods and UQ, including Markov chain Monte Carlo sampling methods for UQ in inverse problems. Each chapter contains MATLAB? code that implements the algorithms and generates the figures, as well as a large number of exercises accessible to both graduate students and researchers. Computational Uncertainty Quantification for Inverse Problems is intended for graduate students, researchers, and applied scientists. It is appropriate for courses on computational inverse problems, Bayesian methods for inverse problems, and UQ methods for inverse problems.



Inverse Problems And Data Assimilation


Inverse Problems And Data Assimilation
DOWNLOAD
Author : Daniel Sanz-Alonso
language : en
Publisher: Cambridge University Press
Release Date : 2023-08-10

Inverse Problems And Data Assimilation written by Daniel Sanz-Alonso and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-10 with Computers categories.


This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study.