[PDF] An Introduction To Compactness Results In Symplectic Field Theory - eBooks Review

An Introduction To Compactness Results In Symplectic Field Theory


An Introduction To Compactness Results In Symplectic Field Theory
DOWNLOAD

Download An Introduction To Compactness Results In Symplectic Field Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Compactness Results In Symplectic Field Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



An Introduction To Compactness Results In Symplectic Field Theory


An Introduction To Compactness Results In Symplectic Field Theory
DOWNLOAD
Author : Casim Abbas
language : en
Publisher: Springer Science & Business Media
Release Date : 2014-01-07

An Introduction To Compactness Results In Symplectic Field Theory written by Casim Abbas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-07 with Mathematics categories.


This book provides an introduction to symplectic field theory, a new and important subject which is currently being developed. The starting point of this theory are compactness results for holomorphic curves established in the last decade. The author presents a systematic introduction providing a lot of background material, much of which is scattered throughout the literature. Since the content grew out of lectures given by the author, the main aim is to provide an entry point into symplectic field theory for non-specialists and for graduate students. Extensions of certain compactness results, which are believed to be true by the specialists but have not yet been published in the literature in detail, top off the scope of this monograph.



New Perspectives And Challenges In Symplectic Field Theory


New Perspectives And Challenges In Symplectic Field Theory
DOWNLOAD
Author : Miguel Abreu
language : en
Publisher: American Mathematical Soc.
Release Date : 2009

New Perspectives And Challenges In Symplectic Field Theory written by Miguel Abreu and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.


This volume, in honor of Yakov Eliashberg, gives a panorama of some of the most fascinating recent developments in symplectic, contact and gauge theories. It contains research papers aimed at experts, as well as a series of skillfully written surveys accessible for a broad geometrically oriented readership from the graduate level onwards. This collection will serve as an enduring source of information and ideas for those who want to enter this exciting area as well as for experts.



Bordered Heegaard Floer Homology


Bordered Heegaard Floer Homology
DOWNLOAD
Author : Robert Lipshitz
language : en
Publisher: American Mathematical Soc.
Release Date : 2018-08-09

Bordered Heegaard Floer Homology written by Robert Lipshitz and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-09 with Mathematics categories.


The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.



Holomorphic Curves And Global Questions In Contact Geometry


Holomorphic Curves And Global Questions In Contact Geometry
DOWNLOAD
Author : Casim Abbas
language : en
Publisher: Springer
Release Date : 2019-03-29

Holomorphic Curves And Global Questions In Contact Geometry written by Casim Abbas and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-29 with Mathematics categories.


This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory. An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic curves in the field. The authors proceed to the heart of the material providing a detailed exposition about finite energy planes and periodic orbits (chapter 4) to disk filling methods and applications (chapter 9). The material is self-contained. It includes a number of technical appendices giving the geometric analysis foundations for the main results, so that one may easily follow the discussion. Graduate students as well as researchers who want to learn the basics of this fast developing theory will highly appreciate this accessible approach taken by the authors.



Naturality And Mapping Class Groups In Heegard Floer Homology


Naturality And Mapping Class Groups In Heegard Floer Homology
DOWNLOAD
Author : András Juhász
language : en
Publisher: American Mathematical Society
Release Date : 2021-12-09

Naturality And Mapping Class Groups In Heegard Floer Homology written by András Juhász and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-09 with Mathematics categories.


View the abstract.



Floer Cohomology And Flips


Floer Cohomology And Flips
DOWNLOAD
Author : François Charest
language : en
Publisher: American Mathematical Society
Release Date : 2022-08-31

Floer Cohomology And Flips written by François Charest and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-31 with Mathematics categories.


View the abstract.



J Holomorphic Curves And Symplectic Topology


 J Holomorphic Curves And Symplectic Topology
DOWNLOAD
Author : Dusa McDuff
language : en
Publisher: American Mathematical Society
Release Date : 2025-01-03

J Holomorphic Curves And Symplectic Topology written by Dusa McDuff and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Mathematics categories.


The theory of $J$-holomorphic curves has been of great importance since its introduction by Gromov in 1985. In mathematics, its applications include many key results in symplectic topology. It was also one of the main inspirations for the creation of Floer homology. In mathematical physics, it provides a natural context in which to define Gromov–Witten invariants and quantum cohomology, two important ingredients of the mirror symmetry conjecture. The main goal of this book is to establish the fundamental theorems of the subject in full and rigorous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associativity of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology: there are two long chapters on applications, one concentrating on classical results in symplectic topology and the other concerned with quantum cohomology. The last chapter sketches some recent developments in Floer theory. The five appendices of the book provide necessary background related to the classical theory of linear elliptic operators, Fredholm theory, Sobolev spaces, as well as a discussion of the moduli space of genus zero stable curves and a proof of the positivity of intersections of $J$-holomorphic curves in four-dimensional manifolds. The second edition clarifies various arguments, corrects several mistakes in the first edition, includes some additional results in Chapter 10 and Appendices C and D, and updates the references to recent developments.



The Restricted Three Body Problem And Holomorphic Curves


The Restricted Three Body Problem And Holomorphic Curves
DOWNLOAD
Author : Urs Frauenfelder
language : en
Publisher: Springer
Release Date : 2018-08-29

The Restricted Three Body Problem And Holomorphic Curves written by Urs Frauenfelder and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-29 with Mathematics categories.


The book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019



Handbook Of Geometry And Topology Of Singularities Vii


Handbook Of Geometry And Topology Of Singularities Vii
DOWNLOAD
Author : José Luis Cisneros-Molina
language : en
Publisher: Springer Nature
Release Date : 2025-03-01

Handbook Of Geometry And Topology Of Singularities Vii written by José Luis Cisneros-Molina and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-01 with Mathematics categories.


This is the seventh volume of the Handbook of Geometry and Topology of Singularities, a series that aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of fourteen chapters that provide an in-depth and reader-friendly introduction to various important aspects of singularity theory. The volume begins with an outstanding exposition on Jim Damon’s contributions to singularity theory and its applications. Jim passed away in 2022 and he was one of the greatest mathematicians of recent times, having made remarkable contributions to singularity theory and its applications, mostly to medical image computing. The next chapter focuses on the singularities of real functions and their bifurcation sets. Then, we look at the perturbation theory of polynomials and linear operators, complex analytic frontal singularities, the global singularity theory of differentiable maps, and the singularities of holomorphic functions from a global point of view. The volume continues with an overview of new tools in singularity theory that spring from symplectic geometry and Floer-type homology theories. Then, it looks at the derivation of Lie algebras of isolated singularities and the three-dimensional rational isolated complete intersection singularities, as well as recent developments in algebraic K-stability and the stable degeneration conjecture. This volume also contains an interesting survey on V-filtrations, a theory began by Malgrange and Kashiwara that can be used to study nearby and vanishing cycle functors and introduced by Deligne. Then, we present a panoramic view of the Hodge, toric, and motivic methods in the study of Milnor fibers in singularity theory, both from local and global points of view. The Monodromy conjecture is also explained; this is a longstanding open problem in singularity theory that lies at the crossroads of number theory, algebra, analysis, geometry, and topology. This volume closes with recent developments in the study of the algebraic complexity of optimization problems in applied algebraic geometry and algebraic statistics. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.



Applications Of Polyfold Theory I The Polyfolds Of Gromov Witten Theory


Applications Of Polyfold Theory I The Polyfolds Of Gromov Witten Theory
DOWNLOAD
Author : H. Hofer
language : en
Publisher: American Mathematical Soc.
Release Date : 2017-07-13

Applications Of Polyfold Theory I The Polyfolds Of Gromov Witten Theory written by H. Hofer and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-13 with Mathematics categories.


In this paper the authors start with the construction of the symplectic field theory (SFT). As a general theory of symplectic invariants, SFT has been outlined in Introduction to symplectic field theory (2000), by Y. Eliashberg, A. Givental and H. Hofer who have predicted its formal properties. The actual construction of SFT is a hard analytical problem which will be overcome be means of the polyfold theory due to the present authors. The current paper addresses a significant amount of the arising issues and the general theory will be completed in part II of this paper. To illustrate the polyfold theory the authors use the results of the present paper to describe an alternative construction of the Gromov-Witten invariants for general compact symplectic manifolds.