[PDF] An Introduction To Elliptic Curves Modular Forms And The Modularity Theorem - eBooks Review

An Introduction To Elliptic Curves Modular Forms And The Modularity Theorem


An Introduction To Elliptic Curves Modular Forms And The Modularity Theorem
DOWNLOAD

Download An Introduction To Elliptic Curves Modular Forms And The Modularity Theorem PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Elliptic Curves Modular Forms And The Modularity Theorem book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



An Introduction To Elliptic Curves Modular Forms And The Modularity Theorem


An Introduction To Elliptic Curves Modular Forms And The Modularity Theorem
DOWNLOAD
Author : Blaze Okonogi-Neth
language : en
Publisher:
Release Date : 2023

An Introduction To Elliptic Curves Modular Forms And The Modularity Theorem written by Blaze Okonogi-Neth and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with categories.




Elliptic Curves Modular Forms And Their L Functions


Elliptic Curves Modular Forms And Their L Functions
DOWNLOAD
Author : Álvaro Lozano-Robledo
language : en
Publisher: American Mathematical Soc.
Release Date : 2011

Elliptic Curves Modular Forms And Their L Functions written by Álvaro Lozano-Robledo and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Mathematics categories.


Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.



Modular Forms A Classical And Computational Introduction 2nd Edition


Modular Forms A Classical And Computational Introduction 2nd Edition
DOWNLOAD
Author : Lloyd James Peter Kilford
language : en
Publisher: World Scientific Publishing Company
Release Date : 2015-03-12

Modular Forms A Classical And Computational Introduction 2nd Edition written by Lloyd James Peter Kilford and has been published by World Scientific Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-12 with Mathematics categories.


Modular Forms is a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to various subjects, such as the theory of quadratic forms, the proof of Fermat's Last Theorem and the approximation of π. The text gives a balanced overview of both the theoretical and computational sides of its subject, allowing a variety of courses to be taught from it.This second edition has been revised and updated. New material on the future of modular forms as well as a chapter about longer-form projects for students has also been added.



Introduction To Applications Of Modular Forms


Introduction To Applications Of Modular Forms
DOWNLOAD
Author : Zafer Selcuk Aygin
language : en
Publisher: Springer Nature
Release Date : 2023-07-13

Introduction To Applications Of Modular Forms written by Zafer Selcuk Aygin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-13 with Mathematics categories.


This book is a self-contained treatment for those who study or work on the computational aspects of classical modular forms. The author describes the theory of modular forms and its applications in number theoretic problems such as representations by quadratic forms and the determination of asymptotic formulas for Fourier coefficients of different types of special functions. A detailed account of recent applications of modular forms in number theory with a focus on using computer algorithms is provided. Computer algorithms are included for each presented application to help readers put the theory in context and make new conjectures.



Elliptic Curves Modular Forms And Iwasawa Theory


Elliptic Curves Modular Forms And Iwasawa Theory
DOWNLOAD
Author : David Loeffler
language : en
Publisher: Springer
Release Date : 2017-01-15

Elliptic Curves Modular Forms And Iwasawa Theory written by David Loeffler and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-15 with Mathematics categories.


Celebrating one of the leading figures in contemporary number theory – John H. Coates – on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference Elliptic Curves, Modular Forms and Iwasawa Theory, held in honour of the 70th birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.



A First Course In Modular Forms


A First Course In Modular Forms
DOWNLOAD
Author : Fred Diamond
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-30

A First Course In Modular Forms written by Fred Diamond and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-30 with Mathematics categories.


This book introduces the theory of modular forms with an eye toward the Modularity Theorem:All rational elliptic curves arise from modular forms. The topics covered include • elliptic curves as complex tori and as algebraic curves, • modular curves as Riemann surfaces and as algebraic curves, • Hecke operators and Atkin–Lehner theory, • Hecke eigenforms and their arithmetic properties, • the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms, • elliptic and modular curves modulo p and the Eichler–Shimura Relation, • the Galois representations associated to elliptic curves and to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory.A First Course in Modular Forms is written for beginning graduate students and advanced undergraduates. It does not require background in algebraic number theory or algebraic geometry, and it contains exercises throughout.Fred Diamond received his Ph.D from Princeton University in 1988 under the direction of Andrew Wiles and now teaches at King's College London. Jerry Shurman received his Ph.D from Princeton University in 1988 under the direction of Goro Shimura and now teaches at Reed College.



Modular Forms And Fermat S Last Theorem


Modular Forms And Fermat S Last Theorem
DOWNLOAD
Author : Gary Cornell
language : en
Publisher: Springer Science & Business Media
Release Date : 1997

Modular Forms And Fermat S Last Theorem written by Gary Cornell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.


A collection of expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held at Boston University. The purpose of the conference, and indeed this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof, and to explain how his result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. The book begins with an overview of the complete proof, theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications.



Elliptic Curves Hilbert Modular Forms And Galois Deformations


Elliptic Curves Hilbert Modular Forms And Galois Deformations
DOWNLOAD
Author : Laurent Berger
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-13

Elliptic Curves Hilbert Modular Forms And Galois Deformations written by Laurent Berger and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-13 with Mathematics categories.


The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year. The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at p that arise naturally in Galois deformation theory. The notes by Gebhard Böckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l ≠ p and local deformations at p which are flat. In the last section,the results of Böckle and Kisin on presentations of global deformation rings over local ones are discussed. The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients. The notes by Lassina Dembélé and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods depend on the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed. The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification.



The Abel Prize 2013 2017


The Abel Prize 2013 2017
DOWNLOAD
Author : Helge Holden
language : en
Publisher: Springer
Release Date : 2019-02-23

The Abel Prize 2013 2017 written by Helge Holden and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-23 with Mathematics categories.


The book presents the winners of the Abel Prize in mathematics for the period 2013–17: Pierre Deligne (2013); Yakov G. Sinai (2014); John Nash Jr. and Louis Nirenberg (2015); Sir Andrew Wiles (2016); and Yves Meyer (2017). The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos for the period 2003–2017 showing many of the additional activities connected with the Abel Prize. As an added feature, video interviews with the Laureates as well as videos from the prize ceremony are provided at an accompanying website (http://extras.springer.com/). This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer 2014), which profile the work of the previous Abel Prize winners.



Quantum Field Theory Iii Gauge Theory


Quantum Field Theory Iii Gauge Theory
DOWNLOAD
Author : Eberhard Zeidler
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-08-17

Quantum Field Theory Iii Gauge Theory written by Eberhard Zeidler and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-17 with Mathematics categories.


In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).