[PDF] An Introduction To Machine Learning - eBooks Review

An Introduction To Machine Learning


An Introduction To Machine Learning
DOWNLOAD

Download An Introduction To Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



An Introduction To Machine Learning


An Introduction To Machine Learning
DOWNLOAD
Author : Gopinath Rebala
language : en
Publisher: Springer
Release Date : 2019-05-07

An Introduction To Machine Learning written by Gopinath Rebala and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-07 with Technology & Engineering categories.


Just like electricity, Machine Learning will revolutionize our life in many ways – some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with. Offers a comprehensive introduction to Machine Learning, while not assuming any priorknowledge of the topic; Provides a complete overview of available techniques and algorithms in conceptual terms, covering various application domains of machine learning; Not tied to any specific software language or hardware implementation.



Introduction To Machine Learning


Introduction To Machine Learning
DOWNLOAD
Author : Ethem Alpaydin
language : en
Publisher: MIT Press
Release Date : 2004

Introduction To Machine Learning written by Ethem Alpaydin and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Computers categories.


An introductory text in machine learning that gives a unified treatment of methods based on statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining.



Introduction To Machine Learning Fourth Edition


Introduction To Machine Learning Fourth Edition
DOWNLOAD
Author : Ethem Alpaydin
language : en
Publisher: MIT Press
Release Date : 2020-03-24

Introduction To Machine Learning Fourth Edition written by Ethem Alpaydin and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-24 with Computers categories.


A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks. The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.



Introduction To Machine Learning With Python


Introduction To Machine Learning With Python
DOWNLOAD
Author : Andreas C. Müller
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-09-26

Introduction To Machine Learning With Python written by Andreas C. Müller and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-26 with Computers categories.


Many Python developers are curious about what machine learning is and how it can be concretely applied to solve issues faced in businesses handling medium to large amount of data. Machine Learning with Python teaches you the basics of machine learning and provides a thorough hands-on understanding of the subject.You'll learn important machine learning concepts and algorithms, when to use them, and how to use them. The book will cover a machine learning workflow: data preprocessing and working with data, training algorithms, evaluating results, and implementing those algorithms into a production-level system.



An Introduction To Machine Learning


An Introduction To Machine Learning
DOWNLOAD
Author : Vineeta Shrivastava
language : en
Publisher: Blue Rose Publishers
Release Date : 2023-02-06

An Introduction To Machine Learning written by Vineeta Shrivastava and has been published by Blue Rose Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-06 with Computers categories.


The First Edition of the book ''An Introduction to Machine Learning'' combines theory and practice, explaining important methods such as classical linear and logistic regression, deep learning, and neural network with a detailed explanation, all variants of models, suitable examples, and Python code snippets.



Machine Learning For Kids


Machine Learning For Kids
DOWNLOAD
Author : Dale Lane
language : en
Publisher: No Starch Press
Release Date : 2021-01-19

Machine Learning For Kids written by Dale Lane and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-19 with Computers categories.


A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+



An Introduction To Machine Learning


An Introduction To Machine Learning
DOWNLOAD
Author : Miroslav Kubat
language : en
Publisher: Springer Nature
Release Date : 2021-09-25

An Introduction To Machine Learning written by Miroslav Kubat and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-25 with Computers categories.


This textbook offers a comprehensive introduction to Machine Learning techniques and algorithms. This Third Edition covers newer approaches that have become highly topical, including deep learning, and auto-encoding, introductory information about temporal learning and hidden Markov models, and a much more detailed treatment of reinforcement learning. The book is written in an easy-to-understand manner with many examples and pictures, and with a lot of practical advice and discussions of simple applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, rule-induction programs, artificial neural networks, support vector machines, boosting algorithms, unsupervised learning (including Kohonen networks and auto-encoding), deep learning, reinforcement learning, temporal learning (including long short-term memory), hidden Markov models, and the genetic algorithm. Special attention is devoted to performance evaluation, statistical assessment, and to many practical issues ranging from feature selection and feature construction to bias, context, multi-label domains, and the problem of imbalanced classes.



Python Machine Learning


Python Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-12

Python Machine Learning written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-12 with Computers categories.


Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Third edition of the bestselling, widely acclaimed Python machine learning book Clear and intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practices Book Description Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments. What you will learn Master the frameworks, models, and techniques that enable machines to 'learn' from data Use scikit-learn for machine learning and TensorFlow for deep learning Apply machine learning to image classification, sentiment analysis, intelligent web applications, and more Build and train neural networks, GANs, and other models Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.



Artificial Intelligence


Artificial Intelligence
DOWNLOAD
Author : Richard E. Neapolitan
language : en
Publisher: Chapman & Hall/CRC
Release Date : 2018

Artificial Intelligence written by Richard E. Neapolitan and has been published by Chapman & Hall/CRC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Artificial intelligence categories.


The first edition of this popular textbook, Contemporary Artificial Intelligence, provided an accessible and student friendly introduction to AI. This fully revised and expanded update retains the same accessibility and problem-solving approach, while providing new material and methods, including neural networks and deep learning.



Introduction To Machine Learning


Introduction To Machine Learning
DOWNLOAD
Author : Yves Kodratoff
language : en
Publisher: Elsevier
Release Date : 2014-06-28

Introduction To Machine Learning written by Yves Kodratoff and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-28 with Computers categories.


A textbook suitable for undergraduate courses in machine learningand related topics, this book provides a broad survey of the field.Generous exercises and examples give students a firm grasp of theconcepts and techniques of this rapidly developing, challenging subject. Introduction to Machine Learning synthesizes and clarifiesthe work of leading researchers, much of which is otherwise availableonly in undigested technical reports, journals, and conference proceedings.Beginning with an overview suitable for undergraduate readers, Kodratoffestablishes a theoretical basis for machine learning and describesits technical concepts and major application areas. Relevant logicprogramming examples are given in Prolog. Introduction to Machine Learning is an accessible and originalintroduction to a significant research area.