An Introduction To Neural Information Processing

DOWNLOAD
Download An Introduction To Neural Information Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Neural Information Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Theory Of Neural Information Processing Systems
DOWNLOAD
Author : A.C.C. Coolen
language : en
Publisher: OUP Oxford
Release Date : 2005-07-21
Theory Of Neural Information Processing Systems written by A.C.C. Coolen and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-07-21 with Neural networks (Computer science) categories.
Theory of Neural Information Processing Systems provides an explicit, coherent, and up-to-date account of the modern theory of neural information processing systems. It has been carefully developed for graduate students from any quantitative discipline, including mathematics, computer science, physics, engineering or biology, and has been thoroughly class-tested by the authors over a period of some 8 years. Exercises are presented throughout the text and notes on historical background and further reading guide the student into the literature. All mathematical details are included and appendices provide further background material, including probability theory, linear algebra and stochastic processes, making this textbook accessible to a wide audience.
An Introduction To Neural Information Processing
DOWNLOAD
Author : Peiji Liang
language : en
Publisher: Springer
Release Date : 2015-12-22
An Introduction To Neural Information Processing written by Peiji Liang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-22 with Medical categories.
This book provides an overview of neural information processing research, which is one of the most important branches of neuroscience today. Neural information processing is an interdisciplinary subject, and the merging interaction between neuroscience and mathematics, physics, as well as information science plays a key role in the development of this field. This book begins with the anatomy of the central nervous system, followed by an introduction to various information processing models at different levels. The authors all have extensive experience in mathematics, physics and biomedical engineering, and have worked in this multidisciplinary area for a number of years. They present classical examples of how the pioneers in this field used theoretical analysis, mathematical modeling and computer simulation to solve neurobiological problems, and share their experiences and lessons learned. The book is intended for researchers and students with a mathematics, physics or informatics background who are interested in brain research and keen to understand the necessary neurobiology and how they can use their specialties to address neurobiological problems. It is also provides inspiration for neuroscience students who are interested in learning how to use mathematics, physics or informatics approaches to solve problems in their field.
Neural Information Processing And Vlsi
DOWNLOAD
Author : Bing J. Sheu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Neural Information Processing And Vlsi written by Bing J. Sheu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has beenespecially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
An Introduction To Neural Networks
DOWNLOAD
Author : Kevin Gurney
language : en
Publisher: CRC Press
Release Date : 2018-10-08
An Introduction To Neural Networks written by Kevin Gurney and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-08 with Computers categories.
Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.
An Introduction To Neural Computing
DOWNLOAD
Author : Igor Aleksander
language : en
Publisher: Van Nostrand Reinhold Company
Release Date : 1990
An Introduction To Neural Computing written by Igor Aleksander and has been published by Van Nostrand Reinhold Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Computers categories.
The second edition of this text has been updated and includes material on new developments including neurocontrol, pattern analysis and dynamic systems. The book should be useful for undergraduate students of neural networks.
Process Neural Networks
DOWNLOAD
Author : Xingui He
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-07-05
Process Neural Networks written by Xingui He and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-05 with Computers categories.
"Process Neural Network: Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks and enhances the expression capability for practical problems, with broad applicability to solving problems relating to processes in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are closely examined. The application methods, network construction principles, and optimization algorithms of process neural networks in practical fields, such as nonlinear time-varying system modeling, process signal pattern recognition, dynamic system identification, and process forecast, are discussed in detail. The information processing flow and the mapping relationship between inputs and outputs of process neural networks are richly illustrated. Xingui He is a member of Chinese Academy of Engineering and also a professor at the School of Electronic Engineering and Computer Science, Peking University, China, where Shaohua Xu also serves as a professor.
Artificial Neural Network Modelling
DOWNLOAD
Author : Subana Shanmuganathan
language : en
Publisher: Springer
Release Date : 2016-02-03
Artificial Neural Network Modelling written by Subana Shanmuganathan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-03 with Technology & Engineering categories.
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.
Neural Networks
DOWNLOAD
Author : Raul Rojas
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Neural Networks written by Raul Rojas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Computers categories.
Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.
Strengthening Deep Neural Networks
DOWNLOAD
Author : Katy Warr
language : en
Publisher: O'Reilly Media
Release Date : 2019-07-03
Strengthening Deep Neural Networks written by Katy Warr and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-03 with Computers categories.
As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come
Neural Information Processing
DOWNLOAD
Author : Bao-Liang Lu
language : en
Publisher: Springer
Release Date : 2011-11-12
Neural Information Processing written by Bao-Liang Lu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-12 with Computers categories.
The three volume set LNCS 7062, LNCS 7063, and LNCS 7064 constitutes the proceedings of the 18th International Conference on Neural Information Processing, ICONIP 2011, held in Shanghai, China, in November 2011. The 262 regular session papers presented were carefully reviewed and selected from numerous submissions. The papers of part I are organized in topical sections on perception, emotion and development, bioinformatics, biologically inspired vision and recognition, bio-medical data analysis, brain signal processing, brain-computer interfaces, brain-like systems, brain-realistic models for learning, memory and embodied cognition, Clifford algebraic neural networks, combining multiple learners, computational advances in bioinformatics, and computational-intelligent human computer interaction. The second volume is structured in topical sections on cybersecurity and data mining workshop, data mining and knowledge doscovery, evolutionary design and optimisation, graphical models, human-originated data analysis and implementation, information retrieval, integrating multiple nature-inspired approaches, kernel methods and support vector machines, and learning and memory. The third volume contains all the contributions connected with multi-agent systems, natural language processing and intelligent Web information processing, neural encoding and decoding, neural network models, neuromorphic hardware and implementations, object recognition, visual perception modelling, and advances in computational intelligence methods based pattern recognition.