[PDF] An Introduction To Proof Theory - eBooks Review

An Introduction To Proof Theory


An Introduction To Proof Theory
DOWNLOAD

Download An Introduction To Proof Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Proof Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



An Introduction To Proof Theory


An Introduction To Proof Theory
DOWNLOAD
Author : Paolo Mancosu
language : en
Publisher: Oxford University Press
Release Date : 2021

An Introduction To Proof Theory written by Paolo Mancosu and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Mathematics categories.


"Proof theory is a central area of mathematical logic of special interest to philosophy . It has its roots in the foundational debate of the 1920s, in particular, in Hilbert's program in the philosophy of mathematics, which called for a formalization of mathematics, as well as for a proof, using philosophically unproblematic, "finitary" means, that these systems are free from contradiction. Structural proof theory investigates the structure and properties of proofs in different formal deductive systems, including axiomatic derivations, natural deduction, and the sequent calculus. Central results in structural proof theory are the normalization theorem for natural deduction, proved here for both intuitionistic and classical logic, and the cut-elimination theorem for the sequent calculus. In formal systems of number theory formulated in the sequent calculus, the induction rule plays a central role. It can be eliminated from proofs of sequents of a certain elementary form: every proof of an atomic sequent can be transformed into a "simple" proof. This is Hilbert's central idea for giving finitary consistency proofs. The proof requires a measure of proof complexity called an ordinal notation. The branch of proof theory dealing with mathematical systems such as arithmetic thus has come to be called ordinal proof theory. The theory of ordinal notations is developed here in purely combinatorial terms, and the consistency proof for arithmetic presented in detail"--



Ordinal Analysis With An Introduction To Proof Theory


Ordinal Analysis With An Introduction To Proof Theory
DOWNLOAD
Author : Toshiyasu Arai
language : en
Publisher: Springer Nature
Release Date : 2020-08-11

Ordinal Analysis With An Introduction To Proof Theory written by Toshiyasu Arai and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-11 with Philosophy categories.


This book provides readers with a guide to both ordinal analysis, and to proof theory. It mainly focuses on ordinal analysis, a research topic in proof theory that is concerned with the ordinal theoretic content of formal theories. However, the book also addresses ordinal analysis and basic materials in proof theory of first-order or omega logic, presenting some new results and new proofs of known ones.Primarily intended for graduate students and researchers in mathematics, especially in mathematical logic, the book also includes numerous exercises and answers for selected exercises, designed to help readers grasp and apply the main results and techniques discussed.



Proof Theory


Proof Theory
DOWNLOAD
Author : Wolfram Pohlers
language : en
Publisher: Springer
Release Date : 2009-06-10

Proof Theory written by Wolfram Pohlers and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-10 with Mathematics categories.


Although this is an introductory text on proof theory, most of its contents is not found in a unified form elsewhere in the literature, except at a very advanced level. The heart of the book is the ordinal analysis of axiom systems, with particular emphasis on that of the impredicative theory of elementary inductive definitions on the natural numbers. The "constructive" consequences of ordinal analysis are sketched out in the epilogue. The book provides a self-contained treatment assuming no prior knowledge of proof theory and almost none of logic. The author has, moreover, endeavoured not to use the "cabal language" of proof theory, but only a language familiar to most readers.



Handbook Of Proof Theory


Handbook Of Proof Theory
DOWNLOAD
Author : S.R. Buss
language : en
Publisher: Elsevier
Release Date : 1998-07-09

Handbook Of Proof Theory written by S.R. Buss and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-07-09 with Mathematics categories.


This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.



An Introduction To Proof Theory


An Introduction To Proof Theory
DOWNLOAD
Author : Paolo Mancosu
language : en
Publisher: Oxford University Press
Release Date : 2021-08-12

An Introduction To Proof Theory written by Paolo Mancosu and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-12 with Philosophy categories.


An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.



Introduction To Proof In Abstract Mathematics


Introduction To Proof In Abstract Mathematics
DOWNLOAD
Author : Andrew Wohlgemuth
language : en
Publisher: Courier Corporation
Release Date : 2014-06-10

Introduction To Proof In Abstract Mathematics written by Andrew Wohlgemuth and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-10 with Mathematics categories.


The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses.



A Logical Introduction To Proof


A Logical Introduction To Proof
DOWNLOAD
Author : Daniel W. Cunningham
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-19

A Logical Introduction To Proof written by Daniel W. Cunningham and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-19 with Mathematics categories.


The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.



Proof Theory


Proof Theory
DOWNLOAD
Author : Gaisi Takeuti
language : en
Publisher: Courier Corporation
Release Date : 2013-01-01

Proof Theory written by Gaisi Takeuti and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-01 with Mathematics categories.


Focusing on Gentzen-type proof theory, this volume presents a detailed overview of creative works by author Gaisi Takeuti and other twentieth-century logicians. The text explores applications of proof theory to logic as well as other areas of mathematics. Suitable for advanced undergraduates and graduate students of mathematics, this long-out-of-print monograph forms a cornerstone for any library in mathematical logic and related topics. The three-part treatment begins with an exploration of first order systems, including a treatment of predicate calculus involving Gentzen's cut-elimination theorem and the theory of natural numbers in terms of Gödel's incompleteness theorem and Gentzen's consistency proof. The second part, which considers second order and finite order systems, covers simple type theory and infinitary logic. The final chapters address consistency problems with an examination of consistency proofs and their applications.



An Introduction To Mathematical Logic And Type Theory


An Introduction To Mathematical Logic And Type Theory
DOWNLOAD
Author : Peter B. Andrews
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17

An Introduction To Mathematical Logic And Type Theory written by Peter B. Andrews and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.


In case you are considering to adopt this book for courses with over 50 students, please contact ties.nijssen@springer.com for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.