An Introduction To Riemann Finsler Geometry

DOWNLOAD
Download An Introduction To Riemann Finsler Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Riemann Finsler Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
An Introduction To Riemann Finsler Geometry
DOWNLOAD
Author : D. Bao
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
An Introduction To Riemann Finsler Geometry written by D. Bao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe? It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one.
An Introduction To Riemann Finsler Geometry
DOWNLOAD
Author : David Bao
language : en
Publisher:
Release Date : 2000
An Introduction To Riemann Finsler Geometry written by David Bao and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with categories.
Riemann Finsler Geometry
DOWNLOAD
Author : Shiing-Shen Chern
language : en
Publisher: World Scientific
Release Date : 2005
Riemann Finsler Geometry written by Shiing-Shen Chern and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.
Riemann-Finsler geometry is a subject that concerns manifolds with Finsler metrics, including Riemannian metrics. It has applications in many fields of the natural sciences. Curvature is the central concept in Riemann-Finsler geometry. This invaluable textbook presents detailed discussions on important curvatures such the Cartan torsion, the S-curvature, the Landsberg curvature and the Riemann curvature. It also deals with Finsler metrics with special curvature or geodesic properties, such as projectively flat Finsler metrics, Berwald metrics, Finsler metrics of scalar curvature or isotropic S-curvature, etc. Instructive examples are given in abundance, for further description of some important geometric concepts. The text includes the most recent results, although many of the problems discussed are classical. Graduate students and researchers in differential geometry.
An Introduction To Riemann Finsler Geometry
DOWNLOAD
Author : David Dai-Wai Bao
language : en
Publisher:
Release Date : 2000
An Introduction To Riemann Finsler Geometry written by David Dai-Wai Bao and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Finsler spaces categories.
Differential Geometry Of Spray And Finsler Spaces
DOWNLOAD
Author : Zhongmin Shen
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Differential Geometry Of Spray And Finsler Spaces written by Zhongmin Shen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
In this book we study sprays and Finsler metrics. Roughly speaking, a spray on a manifold consists of compatible systems of second-order ordinary differential equations. A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann introduced the Riemann curvature for Riemannian spaces in his ground-breaking Habilitationsvortrag. Thereafter the geometry of these special regular metric spaces is named after him. Riemann also mentioned general regular metric spaces, but he thought that there were nothing new in the general case. In fact, it is technically much more difficult to deal with general regular metric spaces. For more than half century, there had been no essential progress in this direction until P. Finsler did his pioneering work in 1918. Finsler studied the variational problems of curves and surfaces in general regular metric spaces. Some difficult problems were solved by him. Since then, such regular metric spaces are called Finsler spaces. Finsler, however, did not go any further to introduce curvatures for regular metric spaces. He switched his research direction to set theory shortly after his graduation.
A Sampler Of Riemann Finsler Geometry
DOWNLOAD
Author : David Dai-Wai Bao
language : en
Publisher: Cambridge University Press
Release Date : 2004-11
A Sampler Of Riemann Finsler Geometry written by David Dai-Wai Bao and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-11 with Mathematics categories.
These expository accounts treat issues related to volume, geodesics, curvature and mathematical biology, with instructive examples.
Riemannian Manifolds
DOWNLOAD
Author : John M. Lee
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-06
Riemannian Manifolds written by John M. Lee and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-06 with Mathematics categories.
This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds. The author has selected a set of topics that can reasonably be covered in ten to fifteen weeks, instead of making any attempt to provide an encyclopedic treatment of the subject. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics,without which one cannot claim to be doing Riemannian geometry. It then introduces the Riemann curvature tensor, and quickly moves on to submanifold theory in order to give the curvature tensor a concrete quantitative interpretation. From then on, all efforts are bent toward proving the four most fundamental theorems relating curvature and topology: the Gauss–Bonnet theorem (expressing the total curvature of a surface in term so fits topological type), the Cartan–Hadamard theorem (restricting the topology of manifolds of nonpositive curvature), Bonnet’s theorem (giving analogous restrictions on manifolds of strictly positive curvature), and a special case of the Cartan–Ambrose–Hicks theorem (characterizing manifolds of constant curvature). Many other results and techniques might reasonably claim a place in an introductory Riemannian geometry course, but could not be included due to time constraints.
Riemannian Geometry In An Orthogonal Frame
DOWNLOAD
Author : Elie Cartan
language : en
Publisher: World Scientific
Release Date : 2001
Riemannian Geometry In An Orthogonal Frame written by Elie Cartan and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
Elie Cartan's book Geometry of Riemannian Manifolds (1928) was one of the best introductions to his methods. It was based on lectures given by the author at the Sorbonne in the academic year 1925-26. A modernized and extensively augmented edition appeared in 1946 (2nd printing, 1951, and 3rd printing, 1988). Cartan's lectures in 1926-27 were different -- he introduced exterior forms at the very beginning and used extensively orthonormal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. The lectures were translated into Russian in the book Riemannian Geometry in an Orthogonal Frame (1960). This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. The only book of Elie Cartan that was not available in English, it has now been translated into English by Vladislav V Goldberg, the editor of the Russian edition.
Homogeneous Finsler Spaces
DOWNLOAD
Author : Shaoqiang Deng
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-08-01
Homogeneous Finsler Spaces written by Shaoqiang Deng and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-01 with Mathematics categories.
Homogeneous Finsler Spaces is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduces the most recent developments in the study of Lie groups and homogeneous Finsler spaces, leading the reader to directions for further development. The book contains many interesting results such as a Finslerian version of the Myers-Steenrod Theorem, the existence theorem for invariant non-Riemannian Finsler metrics on coset spaces, the Berwaldian characterization of globally symmetric Finsler spaces, the construction of examples of reversible non-Berwaldian Finsler spaces with vanishing S-curvature, and a classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvature. Readers with some background in Lie theory or differential geometry can quickly begin studying problems concerning Lie groups and Finsler geometry.
Two Reports On Harmonic Maps
DOWNLOAD
Author : James Eells
language : en
Publisher: World Scientific
Release Date : 1995
Two Reports On Harmonic Maps written by James Eells and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Mathematics categories.
Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, å-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and Khlerian manifolds.A standard reference for this subject is a pair of Reports, published in 1978 and 1988 by James Eells and Luc Lemaire.This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers.