An Introduction To Riemann Finsler Geometry

DOWNLOAD
Download An Introduction To Riemann Finsler Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Riemann Finsler Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
An Introduction To Riemann Finsler Geometry
DOWNLOAD
Author : D. Bao
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
An Introduction To Riemann Finsler Geometry written by D. Bao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe? It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one.
An Introduction To Riemann Finsler Geometry
DOWNLOAD
Author : David Dai-Wai Bao
language : en
Publisher:
Release Date : 2000
An Introduction To Riemann Finsler Geometry written by David Dai-Wai Bao and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Finsler spaces categories.
An Introduction To Riemann Finsler Geometry
DOWNLOAD
Author : David Bao
language : en
Publisher:
Release Date : 2000
An Introduction To Riemann Finsler Geometry written by David Bao and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with categories.
Comparison Finsler Geometry
DOWNLOAD
Author : Shin-ichi Ohta
language : en
Publisher: Springer Nature
Release Date : 2021-10-09
Comparison Finsler Geometry written by Shin-ichi Ohta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-09 with Mathematics categories.
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
Handbook Of Finsler Geometry 2 2003
DOWNLOAD
Author : Peter L. Antonelli
language : en
Publisher: Springer Science & Business Media
Release Date : 2003
Handbook Of Finsler Geometry 2 2003 written by Peter L. Antonelli and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.
There are several mathematical approaches to Finsler Geometry, all of which are contained and expounded in this comprehensive Handbook. The principal bundles pathway to state-of-the-art Finsler Theory is here provided by M. Matsumoto. His is a cornerstone for this set of essays, as are the articles of R. Miron (Lagrange Geometry) and J. Szilasi (Spray and Finsler Geometry). After studying either one of these, the reader will be able to understand the included survey articles on complex manifolds, holonomy, sprays and KCC-theory, symplectic structures, Legendre duality, Hodge theory and Gauss-Bonnet formulas. Finslerian diffusion theory is presented by its founders, P. Antonelli and T. Zastawniak. To help with calculations and conceptualizations, a CD-ROM containing the software package FINSLER, based on MAPLE, is included with the book.
Gromov Cauchy And Causal Boundaries For Riemannian Finslerian And Lorentzian Manifolds
DOWNLOAD
Author : Jose Luis Flores
language : en
Publisher: American Mathematical Soc.
Release Date : 2013-10-23
Gromov Cauchy And Causal Boundaries For Riemannian Finslerian And Lorentzian Manifolds written by Jose Luis Flores and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-23 with Mathematics categories.
Recently, the old notion of causal boundary for a spacetime V has been redefined consistently. The computation of this boundary ∂V on any standard conformally stationary spacetime V=R×M, suggests a natural compactification MB associated to any Riemannian metric on M or, more generally, to any Finslerian one. The corresponding boundary ∂BM is constructed in terms of Busemann-type functions. Roughly, ∂BM represents the set of all the directions in M including both, asymptotic and "finite" (or "incomplete") directions. This Busemann boundary ∂BM is related to two classical boundaries: the Cauchy boundary ∂CM and the Gromov boundary ∂GM. The authors' aims are: (1) to study the subtleties of both, the Cauchy boundary for any generalized (possibly non-symmetric) distance and the Gromov compactification for any (possibly incomplete) Finsler manifold, (2) to introduce the new Busemann compactification MB, relating it with the previous two completions, and (3) to give a full description of the causal boundary ∂V of any standard conformally stationary spacetime. J. L. Flores and J. Herrera, University of Malaga, Spain, and M. Sánchez, University of Granada, Spain. Publisher's note.
Finsler And Lagrange Geometries
DOWNLOAD
Author : Mihai Anastasiei
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Finsler And Lagrange Geometries written by Mihai Anastasiei and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Science categories.
In the last decade several international conferences on Finsler, Lagrange and Hamilton geometries were organized in Bra§ov, Romania (1994), Seattle, USA (1995), Edmonton, Canada (1998), besides the Seminars that periodically are held in Japan and Romania. All these meetings produced important progress in the field and brought forth the appearance of some reference volumes. Along this line, a new International Conference on Finsler and Lagrange Geometry took place August 26-31,2001 at the "Al.I.Cuza" University in Ia§i, Romania. This Conference was organized in the framework of a Memorandum of Un derstanding (1994-2004) between the "Al.I.Cuza" University in Ia§i, Romania and the University of Alberta in Edmonton, Canada. It was especially dedicated to Prof. Dr. Peter Louis Antonelli, the liaison officer in the Memorandum, an untired promoter of Finsler, Lagrange and Hamilton geometries, very close to the Romanian School of Geometry led by Prof. Dr. Radu Miron. The dedica tion wished to mark also the 60th birthday of Prof. Dr. Peter Louis Antonelli. With this occasion a Diploma was given to Professor Dr. Peter Louis Antonelli conferring the title of Honorary Professor granted to him by the Senate of the oldest Romanian University (140 years), the "Al.I.Cuza" University, Ia§i, Roma nia. There were almost fifty participants from Egypt, Greece, Hungary, Japan, Romania, USA. There were scheduled 45 minutes lectures as well as short communications.
Differential Geometry
DOWNLOAD
Author : Elisabetta Barletta
language : en
Publisher: Springer Nature
Release Date : 2025-04-22
Differential Geometry written by Elisabetta Barletta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-22 with Mathematics categories.
This book, Differential Geometry: Riemannian Geometry and Isometric Immersions (Book I-B), is the first in a captivating series of four books presenting a choice of topics, among fundamental and more advanced in differential geometry (DG). Starting with the basics of semi-Riemannian geometry, the book aims to develop the understanding of smooth 1-parameter variations of geodesics of, and correspondingly of, Jacobi fields. A few algebraic aspects required by the treatment of the Riemann–Christoffel four-tensor and sectional curvature are successively presented. Ricci curvature and Einstein manifolds are briefly discussed. The Sasaki metric on the total space of the tangent bundle over a Riemannian manifold is built, and its main properties are investigated. An important integration technique on a Riemannian manifold, related to the geometry of geodesics, is presented for further applications. The other three books of the series are Differential Geometry 1: Manifolds, Bundle and Characteristic Classes (Book I-A)Differential Geometry 3: Foundations of Cauchy-Riemann and Pseudohermitian Geometry (Book I-C)Differential Geometry 4: Advanced Topics in Cauchy–Riemann and Pseudohermitian Geometry (Book I-D) The four books belong to a larger book project (Differential Geometry, Partial Differential Equations, and Mathematical Physics) by the same authors, aiming to demonstrate how certain portions of DG and the theory of partial differential equations apply to general relativity and (quantum) gravity theory. These books supply some of the ad hoc DG machinery yet do not constitute a comprehensive treatise on DG, but rather authors’ choice based on their scientific (mathematical and physical) interests. These are centered around the theory of immersions—isometric, holomorphic, Cauchy–Riemann (CR)—and pseudohermitian geometry, as devised by Sidney Martin Webster for the study of nondegenerate CR structures, themselves a DG manifestation of the tangential CR equations.
Geometry And Analysis On Finsler Spaces
DOWNLOAD
Author : Qiaoling Xia
language : en
Publisher: World Scientific
Release Date : 2025-02-25
Geometry And Analysis On Finsler Spaces written by Qiaoling Xia and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-25 with Mathematics categories.
Finsler geometry is just Riemannian geometry without a quadratic restriction. It has applications in many fields of natural sciences, including physics, psychology, and ecology. The book is intended to provide basic materials on Finsler geometry for readers and to bring them to the frontiers of active research on related topics.This book is comprised of three parts. In Part I (Chapters 1-4), the author introduces the basics, such as Finsler metrics, the Chern connection, geometric invariant quantities, etc., and gives some rigidity results on Finsler manifolds with certain curvature properties. Part II (Chapters 5-6) covers the theory of geodesics, using which the author establishes some comparison theorems, which are fundamental tools to study global Finsler geometry. In Part III (Chapters 7-9), the author presents recent developments in nonlinear geometric analysis on Finsler spaces, partly based on the author's recent works on Finsler harmonic functions, the eigenvalue problem, and heat flow. The author has made efforts to ensure that the contents are accessible to advanced undergraduates, graduate students, and researchers who are interested in Finsler geometry.
Handbook Of Differential Geometry
DOWNLOAD
Author : Franki J.E. Dillen
language : en
Publisher: Elsevier
Release Date : 2005-11-29
Handbook Of Differential Geometry written by Franki J.E. Dillen and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-29 with Mathematics categories.
In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent).All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas.. Written by experts and covering recent research. Extensive bibliography. Dealing with a diverse range of areas. Starting from the basics