An R And S Plus Companion To Applied Regression

DOWNLOAD
Download An R And S Plus Companion To Applied Regression PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An R And S Plus Companion To Applied Regression book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
An R Companion To Applied Regression
DOWNLOAD
Author : John Fox
language : en
Publisher: SAGE Publications
Release Date : 2018-09-27
An R Companion To Applied Regression written by John Fox and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-27 with Social Science categories.
An R Companion to Applied Regression is a broad introduction to the R statistical computing environment in the context of applied regression analysis. John Fox and Sanford Weisberg provide a step-by-step guide to using the free statistical software R, an emphasis on integrating statistical computing in R with the practice of data analysis, coverage of generalized linear models, and substantial web-based support materials. The Third Edition has been reorganized and includes a new chapter on mixed-effects models, new and updated data sets, and a de-emphasis on statistical programming, while retaining a general introduction to basic R programming. The authors have substantially updated both the car and effects packages for R for this edition, introducing additional capabilities and making the software more consistent and easier to use. They also advocate an everyday data-analysis workflow that encourages reproducible research. To this end, they provide coverage of RStudio, an interactive development environment for R that allows readers to organize and document their work in a simple and intuitive fashion, and then easily share their results with others. Also included is coverage of R Markdown, showing how to create documents that mix R commands with explanatory text. "An R Companion to Applied Regression continues to provide the most comprehensive and user-friendly guide to estimating, interpreting, and presenting results from regression models in R." –Christopher Hare, University of California, Davis
An R And S Plus Companion To Applied Regression
DOWNLOAD
Author : John Fox
language : en
Publisher: SAGE
Release Date : 2002-06-05
An R And S Plus Companion To Applied Regression written by John Fox and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-06-05 with Mathematics categories.
"This book fits right into a needed niche: rigorous enough to give full explanation of the power of the S language, yet accessible enough to assign to social science graduate students without fear of intimidation. It is a tremendous balance of applied statistical "firepower" and thoughtful explanation. It meets all of the important mechanical needs: each example is given in detail, code and data are freely available, and the nuances of models are given rather than just the bare essentials. It also meets some important theoretical needs: linear models, categorical data analysis, an introduction to applying GLMs, a discussion of model diagnostics, and useful instructions on writing customized functions. " —JEFF GILL, University of Florida, Gainesville
Applied Regression Analysis And Generalized Linear Models
DOWNLOAD
Author : John Fox
language : en
Publisher: SAGE Publications
Release Date : 2015-03-18
Applied Regression Analysis And Generalized Linear Models written by John Fox and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-18 with Social Science categories.
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.
Applied Linear Regression
DOWNLOAD
Author : Sanford Weisberg
language : en
Publisher: John Wiley & Sons
Release Date : 2013-06-07
Applied Linear Regression written by Sanford Weisberg and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-07 with Mathematics categories.
Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: "I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression." —Technometrics, February 1987 "Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis." —American Scientist, May–June 1987 Applied Linear Regression, Third Edition has been thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, the Third Edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. The Third Edition incorporates new material reflecting the latest advances, including: Use of smoothers to summarize a scatterplot Box-Cox and graphical methods for selecting transformations Use of the delta method for inference about complex combinations of parameters Computationally intensive methods and simulation, including the bootstrap method Expanded chapters on nonlinear and logistic regression Completely revised chapters on multiple regression, diagnostics, and generalizations of regression Readers will also find helpful pedagogical tools and learning aids, including: More than 100 exercises, most based on interesting real-world data Web primers demonstrating how to use standard statistical packages, including R, S-Plus®, SPSS®, SAS®, and JMP®, to work all the examples and exercises in the text A free online library for R and S-Plus that makes the methods discussed in the book easy to use With its focus on graphical methods and analysis, coupled with many practical examples and exercises, this is an excellent textbook for upper-level undergraduates and graduate students, who will quickly learn how to use linear regression analysis techniques to solve and gain insight into real-life problems.
Applied Regression Modeling
DOWNLOAD
Author : Iain Pardoe
language : en
Publisher: John Wiley & Sons
Release Date : 2013-01-07
Applied Regression Modeling written by Iain Pardoe and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-07 with Mathematics categories.
Praise for the First Edition "The attention to detail is impressive. The book is very well written and the author is extremely careful with his descriptions . . . the examples are wonderful." —The American Statistician Fully revised to reflect the latest methodologies and emerging applications, Applied Regression Modeling, Second Edition continues to highlight the benefits of statistical methods, specifically regression analysis and modeling, for understanding, analyzing, and interpreting multivariate data in business, science, and social science applications. The author utilizes a bounty of real-life examples, case studies, illustrations, and graphics to introduce readers to the world of regression analysis using various software packages, including R, SPSS, Minitab, SAS, JMP, and S-PLUS. In a clear and careful writing style, the book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, and Bayesian modeling. In addition, the Second Edition features clarification and expansion of challenging topics, such as: Transformations, indicator variables, and interaction Testing model assumptions Nonconstant variance Autocorrelation Variable selection methods Model building and graphical interpretation Throughout the book, datasets and examples have been updated and additional problems are included at the end of each chapter, allowing readers to test their comprehension of the presented material. In addition, a related website features the book's datasets, presentation slides, detailed statistical software instructions, and learning resources including additional problems and instructional videos. With an intuitive approach that is not heavy on mathematical detail, Applied Regression Modeling, Second Edition is an excellent book for courses on statistical regression analysis at the upper-undergraduate and graduate level. The book also serves as a valuable resource for professionals and researchers who utilize statistical methods for decision-making in their everyday work.
Linear Models With R Second Edition
DOWNLOAD
Author : Julian J. Faraway
language : en
Publisher: CRC Press
Release Date : 2014-07-01
Linear Models With R Second Edition written by Julian J. Faraway and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-01 with Mathematics categories.
A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.
Applied Smoothing Techniques For Data Analysis
DOWNLOAD
Author : Adrian W. Bowman
language : en
Publisher: OUP Oxford
Release Date : 1997-08-14
Applied Smoothing Techniques For Data Analysis written by Adrian W. Bowman and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-08-14 with Mathematics categories.
The book describes the use of smoothing techniques in statistics, including both density estimation and nonparametric regression. Considerable advances in research in this area have been made in recent years. The aim of this text is to describe a variety of ways in which these methods can be applied to practical problems in statistics. The role of smoothing techniques in exploring data graphically is emphasised, but the use of nonparametric curves in drawing conclusions from data, as an extension of more standard parametric models, is also a major focus of the book. Examples are drawn from a wide range of applications. The book is intended for those who seek an introduction to the area, with an emphasis on applications rather than on detailed theory. It is therefore expected that the book will benefit those attending courses at an advanced undergraduate, or postgraduate, level, as well as researchers, both from statistics and from other disciplines, who wish to learn about and apply these techniques in practical data analysis. The text makes extensive reference to S-Plus, as a computing environment in which examples can be explored. S-Plus functions and example scripts are provided to implement many of the techniques described. These parts are, however, clearly separate from the main body of text, and can therefore easily be skipped by readers not interested in S-Plus.
Learning R
DOWNLOAD
Author : Richard Cotton
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2013-09-09
Learning R written by Richard Cotton and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-09 with Computers categories.
Learn how to perform data analysis with the R language and software environment, even if you have little or no programming experience. With the tutorials in this hands-on guide, youâ??ll learn how to use the essential R tools you need to know to analyze data, including data types and programming concepts. The second half of Learning R shows you real data analysis in action by covering everything from importing data to publishing your results. Each chapter in the book includes a quiz on what youâ??ve learned, and concludes with exercises, most of which involve writing R code. Write a simple R program, and discover what the language can do Use data types such as vectors, arrays, lists, data frames, and strings Execute code conditionally or repeatedly with branches and loops Apply R add-on packages, and package your own work for others Learn how to clean data you import from a variety of sources Understand data through visualization and summary statistics Use statistical models to pass quantitative judgments about data and make predictions Learn what to do when things go wrong while writing data analysis code
Applied Regression Analysis
DOWNLOAD
Author : Norman R. Draper
language : en
Publisher: John Wiley & Sons
Release Date : 2014-08-25
Applied Regression Analysis written by Norman R. Draper and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-25 with Mathematics categories.
An outstanding introduction to the fundamentals of regression analysis-updated and expanded The methods of regression analysis are the most widely used statistical tools for discovering the relationships among variables. This classic text, with its emphasis on clear, thorough presentation of concepts and applications, offers a complete, easily accessible introduction to the fundamentals of regression analysis. Assuming only a basic knowledge of elementary statistics, Applied Regression Analysis, Third Edition focuses on the fitting and checking of both linear and nonlinear regression models, using small and large data sets, with pocket calculators or computers. This Third Edition features separate chapters on multicollinearity, generalized linear models, mixture ingredients, geometry of regression, robust regression, and resampling procedures. Extensive support materials include sets of carefully designed exercises with full or partial solutions and a series of true/false questions with answers. All data sets used in both the text and the exercises can be found on the companion disk at the back of the book. For analysts, researchers, and students in university, industrial, and government courses on regression, this text is an excellent introduction to the subject and an efficient means of learning how to use a valuable analytical tool. It will also prove an invaluable reference resource for applied scientists and statisticians.
Modern Applied Statistics With S Plus
DOWNLOAD
Author : William N. Venables
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Modern Applied Statistics With S Plus written by William N. Venables and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
S-PLUS is a powerful environment for the statistical and graphical analysis of data. It provides the tools to implement many statistical ideas which have been made possible by the widespread availability of workstations having good graphics and computational capabilities. This book is a guide to using S-PLUS to perform statistical analyses and provides both an introduction to the use of S-PLUS and a course in modern statistical methods. S-PLUS is available for both Windows and UNIX workstations, and both versions are covered in depth. The aim of the book is to show how to use S-PLUS as a powerful and graphical system. Readers are assumed to have a basic grounding in statistics, and so the book is intended for would-be users of S-PLUS, and both students and researchers using statistics. Throughout, the emphasis is on presenting practical problems and full analyses of real data sets. Many of the methods discussed are state-of-the-art approaches to topics such as linear and non-linear regression models, robust and smooth regression methods, survival analysis, multivariate analysis, tree-based methods, time series, spatial statistics, and classification. This second edition is intended for users of S-PLUS 3.3, 4.0, or later. It covers the recent developments in graphics and new statistical functionality, including bootstraping, mixed effects, linear and non-linear models, factor analysis, and regression with autocorrelated errors. The material on S-PLUS programming has been re-written to explain the full story behind the object-oriented programming features. The authors have written several software libraries which enhance S-PLUS; these and all the datasets used are available on the Internet in versions for Windows and UNIX. There are also on-line complements covering advanced material, further exercises and new features of S-PLUS as they are introduced. Dr. Venables is Head of Department and Senior Lecturer at the Department of