Analysis And Linear Algebra The Singular Value Decomposition And Applications

DOWNLOAD
Download Analysis And Linear Algebra The Singular Value Decomposition And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis And Linear Algebra The Singular Value Decomposition And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Analysis And Linear Algebra
DOWNLOAD
Author : James Bisgard
language : en
Publisher:
Release Date : 2021
Analysis And Linear Algebra written by James Bisgard and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Algebras, Linear categories.
This book provides an elementary analytically inclined journey to a fundamental result of linear algebra: the Singular Value Decomposition (SVD). SVD is a workhorse in many applications of linear algebra to data science. Four important applications relevant to data science are considered throughout the book: determining the subspace that ""best"" approximates a given set (dimension reduction of a data set); finding the ""best"" lower rank approximation of a given matrix (compression and general approximation problems); the Moore-Penrose pseudo-inverse (relevant to solving least squares problem.
Numerical Linear Algebra And Applications
DOWNLOAD
Author : Biswa Nath Datta
language : en
Publisher: SIAM
Release Date : 2010-01-01
Numerical Linear Algebra And Applications written by Biswa Nath Datta and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-01 with Mathematics categories.
Full of features and applications, this acclaimed textbook for upper undergraduate level and graduate level students includes all the major topics of computational linear algebra, including solution of a system of linear equations, least-squares solutions of linear systems, computation of eigenvalues, eigenvectors, and singular value problems. Drawing from numerous disciplines of science and engineering, the author covers a variety of motivating applications. When a physical problem is posed, the scientific and engineering significance of the solution is clearly stated. Each chapter contains a summary of the important concepts developed in that chapter, suggestions for further reading, and numerous exercises, both theoretical and MATLAB and MATCOM based. The author also provides a list of key words for quick reference. The MATLAB toolkit available online, 'MATCOM', contains implementations of the major algorithms in the book and will enable students to study different algorithms for the same problem, comparing efficiency, stability, and accuracy.
Data Driven Science And Engineering
DOWNLOAD
Author : Steven L. Brunton
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-05
Data Driven Science And Engineering written by Steven L. Brunton and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-05 with Computers categories.
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Linear Algebra
DOWNLOAD
Author : Jörg Liesen
language : en
Publisher: Springer
Release Date : 2015-11-20
Linear Algebra written by Jörg Liesen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-20 with Mathematics categories.
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exercises.
A Practical Approach To Microarray Data Analysis
DOWNLOAD
Author : Daniel P. Berrar
language : en
Publisher: Springer Science & Business Media
Release Date : 2002-12-31
A Practical Approach To Microarray Data Analysis written by Daniel P. Berrar and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-12-31 with Science categories.
In the past several years, DNA microarray technology has attracted tremendous interest in both the scientific community and in industry. With its ability to simultaneously measure the activity and interactions of thousands of genes, this modern technology promises unprecedented new insights into mechanisms of living systems. Currently, the primary applications of microarrays include gene discovery, disease diagnosis and prognosis, drug discovery (pharmacogenomics), and toxicological research (toxicogenomics). Typical scientific tasks addressed by microarray experiments include the identification of coexpressed genes, discovery of sample or gene groups with similar expression patterns, identification of genes whose expression patterns are highly differentiating with respect to a set of discerned biological entities (e.g., tumor types), and the study of gene activity patterns under various stress conditions (e.g., chemical treatment). More recently, the discovery, modeling, and simulation of regulatory gene networks, and the mapping of expression data to metabolic pathways and chromosome locations have been added to the list of scientific tasks that are being tackled by microarray technology. Each scientific task corresponds to one or more so-called data analysis tasks. Different types of scientific questions require different sets of data analytical techniques. Broadly speaking, there are two classes of elementary data analysis tasks, predictive modeling and pattern-detection. Predictive modeling tasks are concerned with learning a classification or estimation function, whereas pattern-detection methods screen the available data for interesting, previously unknown regularities or relationships.
Projection Matrices Generalized Inverse Matrices And Singular Value Decomposition
DOWNLOAD
Author : Haruo Yanai
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-04-06
Projection Matrices Generalized Inverse Matrices And Singular Value Decomposition written by Haruo Yanai and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-04-06 with Mathematics categories.
Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.
Finite Dimensional Linear Algebra
DOWNLOAD
Author : Mark S. Gockenbach
language : en
Publisher: CRC Press
Release Date : 2011-06-15
Finite Dimensional Linear Algebra written by Mark S. Gockenbach and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-15 with Mathematics categories.
Linear algebra forms the basis for much of modern mathematics—theoretical, applied, and computational. Finite-Dimensional Linear Algebra provides a solid foundation for the study of advanced mathematics and discusses applications of linear algebra to such diverse areas as combinatorics, differential equations, optimization, and approximation. The author begins with an overview of the essential themes of the book: linear equations, best approximation, and diagonalization. He then takes students through an axiomatic development of vector spaces, linear operators, eigenvalues, norms, and inner products. In addition to discussing the special properties of symmetric matrices, he covers the Jordan canonical form, an important theoretical tool, and the singular value decomposition, a powerful tool for computation. The final chapters present introductions to numerical linear algebra and analysis in vector spaces, including a brief introduction to functional analysis (infinite-dimensional linear algebra). Drawing on material from the author’s own course, this textbook gives students a strong theoretical understanding of linear algebra. It offers many illustrations of how linear algebra is used throughout mathematics.
Linear Algebra And Matrix Analysis For Statistics
DOWNLOAD
Author : Sudipto Banerjee
language : en
Publisher: CRC Press
Release Date : 2014-06-06
Linear Algebra And Matrix Analysis For Statistics written by Sudipto Banerjee and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-06 with Mathematics categories.
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.
Matrix Algebra
DOWNLOAD
Author : James E. Gentle
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-06
Matrix Algebra written by James E. Gentle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-06 with Mathematics categories.
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. The first part of this book presents the relevant aspects of the theory of matrix algebra for applications in statistics. This part begins with the fundamental concepts of vectors and vector spaces, next covers the basic algebraic properties of matrices, then describes the analytic properties of vectors and matrices in the multivariate calculus, and finally discusses operations on matrices in solutions of linear systems and in eigenanalysis. This part is essentially self-contained. The second part of the book begins with a consideration of various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. The second part also describes some of the many applications of matrix theory in statistics, including linear models, multivariate analysis, and stochastic processes. The brief coverage in this part illustrates the matrix theory developed in the first part of the book. The first two parts of the book can be used as the text for a course in matrix algebra for statistics students, or as a supplementary text for various courses in linear models or multivariate statistics. The third part of this book covers numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. This part is essentially self-contained, although it assumes some ability to program in Fortran or C and/or the ability to use R/S-Plus or Matlab. This part of the book can be used as the text for a course in statistical computing, or as a supplementary text for various courses that emphasize computations. The book includes a large number of exercises with some solutions provided in an appendix.
Matrix Analysis And Applied Linear Algebra
DOWNLOAD
Author : Carl D. Meyer
language : en
Publisher: SIAM
Release Date : 2000-01-01
Matrix Analysis And Applied Linear Algebra written by Carl D. Meyer and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-01-01 with Mathematics categories.
Matrix Analysis and Applied Linear Algebra is an honest math text that circumvents the traditional definition-theorem-proof format that has bored students in the past. Meyer uses a fresh approach to introduce a variety of problems and examples ranging from the elementary to the challenging and from simple applications to discovery problems. The focus on applications is a big difference between this book and others. Meyer's book is more rigorous and goes into more depth than some. He includes some of the more contemporary topics of applied linear algebra which are not normally found in undergraduate textbooks. Modern concepts and notation are used to introduce the various aspects of linear equations, leading readers easily to numerical computations and applications. The theoretical developments are always accompanied with examples, which are worked out in detail. Each section ends with a large number of carefully chosen exercises from which the students can gain further insight.