[PDF] Data Driven Science And Engineering - eBooks Review

Data Driven Science And Engineering


Data Driven Science And Engineering
DOWNLOAD

Download Data Driven Science And Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Data Driven Science And Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Data Driven Science And Engineering


Data Driven Science And Engineering
DOWNLOAD
Author : Steven L. Brunton
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-05

Data Driven Science And Engineering written by Steven L. Brunton and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-05 with Computers categories.


A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.



Data Driven Modeling Scientific Computation


Data Driven Modeling Scientific Computation
DOWNLOAD
Author : Jose Nathan Kutz
language : en
Publisher:
Release Date : 2013-08-08

Data Driven Modeling Scientific Computation written by Jose Nathan Kutz and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-08 with Computers categories.


Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.



Machine Learning Control Taming Nonlinear Dynamics And Turbulence


Machine Learning Control Taming Nonlinear Dynamics And Turbulence
DOWNLOAD
Author : Thomas Duriez
language : en
Publisher: Springer
Release Date : 2016-11-02

Machine Learning Control Taming Nonlinear Dynamics And Turbulence written by Thomas Duriez and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-02 with Technology & Engineering categories.


This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.



Data Driven Engineering Design


Data Driven Engineering Design
DOWNLOAD
Author : Ang Liu
language : en
Publisher: Springer Nature
Release Date : 2021-10-09

Data Driven Engineering Design written by Ang Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-09 with Technology & Engineering categories.


This book addresses the emerging paradigm of data-driven engineering design. In the big-data era, data is becoming a strategic asset for global manufacturers. This book shows how the power of data can be leveraged to drive the engineering design process, in particular, the early-stage design. Based on novel combinations of standing design methodology and the emerging data science, the book presents a collection of theoretically sound and practically viable design frameworks, which are intended to address a variety of critical design activities including conceptual design, complexity management, smart customization, smart product design, product service integration, and so forth. In addition, it includes a number of detailed case studies to showcase the application of data-driven engineering design. The book concludes with a set of promising research questions that warrant further investigation. Given its scope, the book will appeal to a broad readership, including postgraduate students, researchers, lecturers, and practitioners in the field of engineering design.



Data Driven Technology For Engineering Systems Health Management


Data Driven Technology For Engineering Systems Health Management
DOWNLOAD
Author : Gang Niu
language : en
Publisher: Springer
Release Date : 2016-07-27

Data Driven Technology For Engineering Systems Health Management written by Gang Niu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-27 with Technology & Engineering categories.


This book introduces condition-based maintenance (CBM)/data-driven prognostics and health management (PHM) in detail, first explaining the PHM design approach from a systems engineering perspective, then summarizing and elaborating on the data-driven methodology for feature construction, as well as feature-based fault diagnosis and prognosis. The book includes a wealth of illustrations and tables to help explain the algorithms, as well as practical examples showing how to use this tool to solve situations for which analytic solutions are poorly suited. It equips readers to apply the concepts discussed in order to analyze and solve a variety of problems in PHM system design, feature construction, fault diagnosis and prognosis.



Dynamic Mode Decomposition


Dynamic Mode Decomposition
DOWNLOAD
Author : J. Nathan Kutz
language : en
Publisher: SIAM
Release Date : 2016-11-23

Dynamic Mode Decomposition written by J. Nathan Kutz and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-23 with Science categories.


Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.



Applied Data Science


Applied Data Science
DOWNLOAD
Author : Martin Braschler
language : en
Publisher: Springer
Release Date : 2019-06-13

Applied Data Science written by Martin Braschler and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-13 with Computers categories.


This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science:first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.



Informatics For Materials Science And Engineering


Informatics For Materials Science And Engineering
DOWNLOAD
Author : Krishna Rajan
language : en
Publisher: Butterworth-Heinemann
Release Date : 2013-07-10

Informatics For Materials Science And Engineering written by Krishna Rajan and has been published by Butterworth-Heinemann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-10 with Technology & Engineering categories.


Materials informatics: a 'hot topic' area in materials science, aims to combine traditionally bio-led informatics with computational methodologies, supporting more efficient research by identifying strategies for time- and cost-effective analysis. The discovery and maturation of new materials has been outpaced by the thicket of data created by new combinatorial and high throughput analytical techniques. The elaboration of this "quantitative avalanche"—and the resulting complex, multi-factor analyses required to understand it—means that interest, investment, and research are revisiting informatics approaches as a solution. This work, from Krishna Rajan, the leading expert of the informatics approach to materials, seeks to break down the barriers between data management, quality standards, data mining, exchange, and storage and analysis, as a means of accelerating scientific research in materials science. This solutions-based reference synthesizes foundational physical, statistical, and mathematical content with emerging experimental and real-world applications, for interdisciplinary researchers and those new to the field. - Identifies and analyzes interdisciplinary strategies (including combinatorial and high throughput approaches) that accelerate materials development cycle times and reduces associated costs - Mathematical and computational analysis aids formulation of new structure-property correlations among large, heterogeneous, and distributed data sets - Practical examples, computational tools, and software analysis benefits rapid identification of critical data and analysis of theoretical needs for future problems



Data Driven Optimization Of Manufacturing Processes


Data Driven Optimization Of Manufacturing Processes
DOWNLOAD
Author : Kalita, Kanak
language : en
Publisher: IGI Global
Release Date : 2020-12-25

Data Driven Optimization Of Manufacturing Processes written by Kalita, Kanak and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-25 with Technology & Engineering categories.


All machining process are dependent on a number of inherent process parameters. It is of the utmost importance to find suitable combinations to all the process parameters so that the desired output response is optimized. While doing so may be nearly impossible or too expensive by carrying out experiments at all possible combinations, it may be done quickly and efficiently by using computational intelligence techniques. Due to the versatile nature of computational intelligence techniques, they can be used at different phases of the machining process design and optimization process. While powerful machine-learning methods like gene expression programming (GEP), artificial neural network (ANN), support vector regression (SVM), and more can be used at an early phase of the design and optimization process to act as predictive models for the actual experiments, other metaheuristics-based methods like cuckoo search, ant colony optimization, particle swarm optimization, and others can be used to optimize these predictive models to find the optimal process parameter combination. These machining and optimization processes are the future of manufacturing. Data-Driven Optimization of Manufacturing Processes contains the latest research on the application of state-of-the-art computational intelligence techniques from both predictive modeling and optimization viewpoint in both soft computing approaches and machining processes. The chapters provide solutions applicable to machining or manufacturing process problems and for optimizing the problems involved in other areas of mechanical, civil, and electrical engineering, making it a valuable reference tool. This book is addressed to engineers, scientists, practitioners, stakeholders, researchers, academicians, and students interested in the potential of recently developed powerful computational intelligence techniques towards improving the performance of machining processes.