Analysis Of Approximation Methods For Differential And Integral Equations

DOWNLOAD
Download Analysis Of Approximation Methods For Differential And Integral Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis Of Approximation Methods For Differential And Integral Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Analysis Of Approximation Methods For Differential And Integral Equations
DOWNLOAD
Author : Hans-Jürgen Reinhardt
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Analysis Of Approximation Methods For Differential And Integral Equations written by Hans-Jürgen Reinhardt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is primarily based on the research done by the Numerical Analysis Group at the Goethe-Universitat in Frankfurt/Main, and on material presented in several graduate courses by the author between 1977 and 1981. It is hoped that the text will be useful for graduate students and for scientists interested in studying a fundamental theoretical analysis of numerical methods along with its application to the most diverse classes of differential and integral equations. The text treats numerous methods for approximating solutions of three classes of problems: (elliptic) boundary-value problems, (hyperbolic and parabolic) initial value problems in partial differential equations, and integral equations of the second kind. The aim is to develop a unifying convergence theory, and thereby prove the convergence of, as well as provide error estimates for, the approximations generated by specific numerical methods. The schemes for numerically solving boundary-value problems are additionally divided into the two categories of finite difference methods and of projection methods for approximating their variational formulations.
Numerical Approximation Methods
DOWNLOAD
Author : Harold Cohen
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-09-28
Numerical Approximation Methods written by Harold Cohen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-28 with Mathematics categories.
This book presents numerical and other approximation techniques for solving various types of mathematical problems that cannot be solved analytically. In addition to well known methods, it contains some non-standard approximation techniques that are now formally collected as well as original methods developed by the author that do not appear in the literature. This book contains an extensive treatment of approximate solutions to various types of integral equations, a topic that is not often discussed in detail. There are detailed analyses of ordinary and partial differential equations and descriptions of methods for estimating the values of integrals that are presented in a level of detail that will suggest techniques that will be useful for developing methods for approximating solutions to problems outside of this text. The book is intended for researchers who must approximate solutions to problems that cannot be solved analytically. It is also appropriate for students taking courses in numerical approximation techniques.
Analysis Of Approximation Methods For Differential And Integral Equations
DOWNLOAD
Author : Hans-Jürgen Reinhardt
language : en
Publisher: Springer
Release Date : 1985-10-07
Analysis Of Approximation Methods For Differential And Integral Equations written by Hans-Jürgen Reinhardt and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1985-10-07 with Mathematics categories.
This book is primarily based on the research done by the Numerical Analysis Group at the Goethe-Universitat in Frankfurt/Main, and on material presented in several graduate courses by the author between 1977 and 1981. It is hoped that the text will be useful for graduate students and for scientists interested in studying a fundamental theoretical analysis of numerical methods along with its application to the most diverse classes of differential and integral equations. The text treats numerous methods for approximating solutions of three classes of problems: (elliptic) boundary-value problems, (hyperbolic and parabolic) initial value problems in partial differential equations, and integral equations of the second kind. The aim is to develop a unifying convergence theory, and thereby prove the convergence of, as well as provide error estimates for, the approximations generated by specific numerical methods. The schemes for numerically solving boundary-value problems are additionally divided into the two categories of finite difference methods and of projection methods for approximating their variational formulations.
Approximation Methods For Solutions Of Differential And Integral Equations
DOWNLOAD
Author : V. K. Dzyadyk
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2018-11-05
Approximation Methods For Solutions Of Differential And Integral Equations written by V. K. Dzyadyk and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-05 with Mathematics categories.
No detailed description available for "Approximation Methods for Solutions of Differential and Integral Equations".
A Course On Integral Equations With Numerical Analysis
DOWNLOAD
Author : Tofigh Allahviranloo
language : en
Publisher:
Release Date : 2022
A Course On Integral Equations With Numerical Analysis written by Tofigh Allahviranloo and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.
This book suggests that the numerical analysis subjects' matter are the important tools of the book topic, because numerical errors and methods have important roles in solving integral equations. Therefore, all needed topics including a brief description of interpolation are explained in the book. The integral equations have many applications in the engineering, medical, and economic sciences, so the present book contains new and useful materials about interval computations including interval interpolations that are going to be used in interval integral equations. The concepts of integral equations are going to be discussed in two directions, analytical concepts, and numerical solutions which both are necessary for these kinds of dynamic systems. The differences between this book with the others are a full discussion of error topics and also using interval interpolations concepts to obtain interval integral equations. All researchers and students in the field of mathematical, computer, and also engineering sciences can benefit the subjects of the book.
Techniques Of Functional Analysis For Differential And Integral Equations
DOWNLOAD
Author : Paul Sacks
language : en
Publisher: Academic Press
Release Date : 2017-05-16
Techniques Of Functional Analysis For Differential And Integral Equations written by Paul Sacks and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-16 with Mathematics categories.
Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics
Computational Methods For Integral Equations
DOWNLOAD
Author : L. M. Delves
language : en
Publisher: CUP Archive
Release Date : 1985
Computational Methods For Integral Equations written by L. M. Delves and has been published by CUP Archive this book supported file pdf, txt, epub, kindle and other format this book has been release on 1985 with Mathematics categories.
This textbook provides a readable account of techniques for numerical solutions.
Wavelet Based Approximation Schemes For Singular Integral Equations
DOWNLOAD
Author : Madan Mohan Panja
language : en
Publisher: CRC Press
Release Date : 2020-06-07
Wavelet Based Approximation Schemes For Singular Integral Equations written by Madan Mohan Panja and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-07 with Mathematics categories.
Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.
Numerical Approximation Methods For Elliptic Boundary Value Problems
DOWNLOAD
Author : Olaf Steinbach
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-12-22
Numerical Approximation Methods For Elliptic Boundary Value Problems written by Olaf Steinbach and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-22 with Mathematics categories.
This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.
Mathematical And Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Joël Chaskalovic
language : en
Publisher: Springer
Release Date : 2014-05-16
Mathematical And Numerical Methods For Partial Differential Equations written by Joël Chaskalovic and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-16 with Mathematics categories.
This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.