[PDF] Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity - eBooks Review

Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity


Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity
DOWNLOAD

Download Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity


Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity
DOWNLOAD
Author : Abraham A. Ungar
language : en
Publisher: World Scientific
Release Date : 2008

Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity written by Abraham A. Ungar and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Science categories.


This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. It introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Newtonian velocity addition is the common vector addition, which is both commutative and associative. The resulting vector spaces, in turn, form the algebraic setting for the standard model of Euclidean geometry. In full analogy, Einsteinian velocity addition is a gyrovector addition, which is both gyrocommutative and gyroassociative. The resulting gyrovector spaces, in turn, form the algebraic setting for the Beltrami–Klein ball model of the hyperbolic geometry of Bolyai and Lobachevsky. Similarly, Mצbius addition gives rise to gyrovector spaces that form the algebraic setting for the Poincarי ball model of hyperbolic geometry. In full analogy with classical results, the book presents a novel relativistic interpretation of stellar aberration in terms of relativistic gyrotrigonometry and gyrovector addition. Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. The novel relativistic resultant mass of the system, concentrated at the relativistic center of mass, dictates the validity of the dark matter and the dark energy that were introduced by cosmologists as ad hoc postulates to explain cosmological observations about missing gravitational force and late-time cosmic accelerated expansion. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying analytic hyperbolic geometry.



Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity Second Edition


Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity Second Edition
DOWNLOAD
Author : Abraham Albert Ungar
language : en
Publisher: World Scientific
Release Date : 2022-02-22

Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity Second Edition written by Abraham Albert Ungar and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-22 with Mathematics categories.


This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. The premise of analogy as a study strategy is to make the unfamiliar familiar. Accordingly, this book introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Gyrovectors turn out to be equivalence classes that add according to the gyroparallelogram law just as vectors are equivalence classes that add according to the parallelogram law. In the gyrolanguage of this book, accordingly, one prefixes a gyro to a classical term to mean the analogous term in hyperbolic geometry. As an example, the relativistic gyrotrigonometry of Einstein's special relativity is developed and employed to the study of the stellar aberration phenomenon in astronomy.Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. It turns out that the invariant mass of the relativistic center of mass of an expanding system (like galaxies) exceeds the sum of the masses of its constituent particles. This excess of mass suggests a viable mechanism for the formation of dark matter in the universe, which has not been detected but is needed to gravitationally 'glue' each galaxy in the universe. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying hyperbolic geometry.



Analytic Hyperbolic Geometry In N Dimensions


Analytic Hyperbolic Geometry In N Dimensions
DOWNLOAD
Author : Abraham Albert Ungar
language : en
Publisher: CRC Press
Release Date : 2014-12-17

Analytic Hyperbolic Geometry In N Dimensions written by Abraham Albert Ungar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-17 with Mathematics categories.


The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry. Following the emergence of his gyroalgebra in 1988, the author crafted gyrolanguage, the algebraic language t



Analytic Hyperbolic Geometry


Analytic Hyperbolic Geometry
DOWNLOAD
Author : Abraham A. Ungar
language : en
Publisher: World Scientific
Release Date : 2005

Analytic Hyperbolic Geometry written by Abraham A. Ungar and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


This is the first book on analytic hyperbolic geometry, fully analogous to analytic Euclidean geometry. Analytic hyperbolic geometry regulates relativistic mechanics just as analytic Euclidean geometry regulates classical mechanics. The book presents a novel gyrovector space approach to analytic hyperbolic geometry, fully analogous to the well-known vector space approach to Euclidean geometry. A gyrovector is a hyperbolic vector. In the resulting "gyrolanguage" of the book, one attaches the prefix "gyro" to a classical term to mean the analogous term in hyperbolic geometry. The book begins with the definition of gyrogroups, which is fully analogous to the definition of groups. Gyrogroups, both gyrocommutative and nongyrocommutative, abound in group theory. Surprisingly, the seemingly structureless Einstein velocity addition of special relativity turns out to be a gyrocommutative gyrogroup operation. Introducing scalar multiplication, some gyrocommutative gyrogroups of gyrovectors become gyrovector spaces. The latter, in turn, form the setting for analytic hyperbolic geometry just as vector spaces form the setting for analytic Euclidean geometry. By hybrid techniques of differential geometry and gyrovector spaces, it is shown that Einstein (Mobius) gyrovector spaces form the setting for Beltrami-Klein (Poincare) ball models of hyperbolic geometry. Finally, novel applications of Mobius gyrovector spaces in quantum computation, and of Einstein gyrovector spaces in special relativity, are presented.



Analytic Hyperbolic Geometry Mathematical Foundations And Applications


Analytic Hyperbolic Geometry Mathematical Foundations And Applications
DOWNLOAD
Author : Abraham Albert Ungar
language : en
Publisher: World Scientific
Release Date : 2005-09-05

Analytic Hyperbolic Geometry Mathematical Foundations And Applications written by Abraham Albert Ungar and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-09-05 with Mathematics categories.


This is the first book on analytic hyperbolic geometry, fully analogous to analytic Euclidean geometry. Analytic hyperbolic geometry regulates relativistic mechanics just as analytic Euclidean geometry regulates classical mechanics. The book presents a novel gyrovector space approach to analytic hyperbolic geometry, fully analogous to the well-known vector space approach to Euclidean geometry. A gyrovector is a hyperbolic vector. Gyrovectors are equivalence classes of directed gyrosegments that add according to the gyroparallelogram law just as vectors are equivalence classes of directed segments that add according to the parallelogram law. In the resulting “gyrolanguage” of the book one attaches the prefix “gyro” to a classical term to mean the analogous term in hyperbolic geometry. The prefix stems from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Gyrolanguage turns out to be the language one needs to articulate novel analogies that the classical and the modern in this book share.The scope of analytic hyperbolic geometry that the book presents is cross-disciplinary, involving nonassociative algebra, geometry and physics. As such, it is naturally compatible with the special theory of relativity and, particularly, with the nonassociativity of Einstein velocity addition law. Along with analogies with classical results that the book emphasizes, there are remarkable disanalogies as well. Thus, for instance, unlike Euclidean triangles, the sides of a hyperbolic triangle are uniquely determined by its hyperbolic angles. Elegant formulas for calculating the hyperbolic side-lengths of a hyperbolic triangle in terms of its hyperbolic angles are presented in the book.The book begins with the definition of gyrogroups, which is fully analogous to the definition of groups. Gyrogroups, both gyrocommutative and non-gyrocommutative, abound in group theory. Surprisingly, the seemingly structureless Einstein velocity addition of special relativity turns out to be a gyrocommutative gyrogroup operation. Introducing scalar multiplication, some gyrocommutative gyrogroups of gyrovectors become gyrovector spaces. The latter, in turn, form the setting for analytic hyperbolic geometry just as vector spaces form the setting for analytic Euclidean geometry. By hybrid techniques of differential geometry and gyrovector spaces, it is shown that Einstein (Möbius) gyrovector spaces form the setting for Beltrami-Klein (Poincaré) ball models of hyperbolic geometry. Finally, novel applications of Möbius gyrovector spaces in quantum computation, and of Einstein gyrovector spaces in special relativity, are presented.



Beyond Pseudo Rotations In Pseudo Euclidean Spaces


Beyond Pseudo Rotations In Pseudo Euclidean Spaces
DOWNLOAD
Author : Abraham Ungar
language : en
Publisher: Academic Press
Release Date : 2018-01-10

Beyond Pseudo Rotations In Pseudo Euclidean Spaces written by Abraham Ungar and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-10 with Mathematics categories.


Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces presents for the first time a unified study of the Lorentz transformation group SO(m, n) of signature (m, n), m, n ? N, which is fully analogous to the Lorentz group SO(1, 3) of Einstein's special theory of relativity. It is based on a novel parametric realization of pseudo-rotations by a vector-like parameter with two orientation parameters. The book is of interest to specialized researchers in the areas of algebra, geometry and mathematical physics, containing new results that suggest further exploration in these areas. - Introduces the study of generalized gyrogroups and gyrovector spaces - Develops new algebraic structures, bi-gyrogroups and bi-gyrovector spaces - Helps readers to surmount boundaries between algebra, geometry and physics - Assists readers to parametrize and describe the full set of generalized Lorentz transformations in a geometric way - Generalizes approaches from gyrogroups and gyrovector spaces to bi-gyrogroups and bi-gyrovector spaces with geometric entanglement



Hyperbolic Triangle Centers


Hyperbolic Triangle Centers
DOWNLOAD
Author : A.A. Ungar
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-18

Hyperbolic Triangle Centers written by A.A. Ungar and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-18 with Science categories.


After A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates are related to the Newtonian mass, barycentric coordinates are related to the Einsteinian relativistic mass in hyperbolic geometry. Contrary to general belief, Einstein’s relativistic mass hence meshes up extraordinarily well with Minkowski’s four-vector formalism of special relativity. In Euclidean geometry, barycentric coordinates can be used to determine various triangle centers. While there are many known Euclidean triangle centers, only few hyperbolic triangle centers are known, and none of the known hyperbolic triangle centers has been determined analytically with respect to its hyperbolic triangle vertices. In his recent research, the author set the ground for investigating hyperbolic triangle centers via hyperbolic barycentric coordinates, and one of the purposes of this book is to initiate a study of hyperbolic triangle centers in full analogy with the rich study of Euclidean triangle centers. Owing to its novelty, the book is aimed at a large audience: it can be enjoyed equally by upper-level undergraduates, graduate students, researchers and academics in geometry, abstract algebra, theoretical physics and astronomy. For a fruitful reading of this book, familiarity with Euclidean geometry is assumed. Mathematical-physicists and theoretical physicists are likely to enjoy the study of Einstein’s special relativity in terms of its underlying hyperbolic geometry. Geometers may enjoy the hunt for new hyperbolic triangle centers and, finally, astronomers may use hyperbolic barycentric coordinates in the velocity space of cosmology.



Hypercomplex Analysis And Applications


Hypercomplex Analysis And Applications
DOWNLOAD
Author : Irene Sabadini
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-12-20

Hypercomplex Analysis And Applications written by Irene Sabadini and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-20 with Mathematics categories.


The purpose of the volume is to bring forward recent trends of research in hypercomplex analysis. The list of contributors includes first rate mathematicians and young researchers working on several different aspects in quaternionic and Clifford analysis. Besides original research papers, there are papers providing the state-of-the-art of a specific topic, sometimes containing interdisciplinary fields. The intended audience includes researchers, PhD students, postgraduate students who are interested in the field and in possible connection between hypercomplex analysis and other disciplines, including mathematical analysis, mathematical physics, algebra.



Mathematics Without Boundaries


Mathematics Without Boundaries
DOWNLOAD
Author : Panos M. Pardalos
language : en
Publisher: Springer
Release Date : 2014-09-16

Mathematics Without Boundaries written by Panos M. Pardalos and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-16 with Mathematics categories.


This volume consists of chapters written by eminent scientists and engineers from the international community and present significant advances in several theories, methods and applications of an interdisciplinary research. These contributions focus on both old and recent developments of Global Optimization Theory, Convex Analysis, Calculus of Variations, Discrete Mathematics and Geometry, as well as several applications to a large variety of concrete problems, including applications of computers to the study of smoothness and analyticity of functions, applications to epidemiological diffusion, networks, mathematical models of elastic and piezoelectric fields, optimal algorithms, stability of neutral type vector functional differential equations, sampling and rational interpolation for non-band-limited signals, recurrent neural network for convex optimization problems and experimental design. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical and Engineering subjects and especially to graduate students who search for the latest information.



Barycentric Calculus In Euclidean And Hyperbolic Geometry


Barycentric Calculus In Euclidean And Hyperbolic Geometry
DOWNLOAD
Author : Abraham A. Ungar
language : en
Publisher: World Scientific
Release Date : 2010

Barycentric Calculus In Euclidean And Hyperbolic Geometry written by Abraham A. Ungar and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.


The word barycentric is derived from the Greek word barys (heavy), and refers to center of gravity. Barycentric calculus is a method of treating geometry by considering a point as the center of gravity of certain other points to which weights are ascribed. Hence, in particular, barycentric calculus provides excellent insight into triangle centers. This unique book on barycentric calculus in Euclidean and hyperbolic geometry provides an introduction to the fascinating and beautiful subject of novel triangle centers in hyperbolic geometry along with analogies they share with familiar triangle centers in Euclidean geometry. As such, the book uncovers magnificent unifying notions that Euclidean and hyperbolic triangle centers share. In his earlier books the author adopted Cartesian coordinates, trigonometry and vector algebra for use in hyperbolic geometry that is fully analogous to the common use of Cartesian coordinates, trigonometry and vector algebra in Euclidean geometry. As a result, powerful tools that are commonly available in Euclidean geometry became available in hyperbolic geometry as well, enabling one to explore hyperbolic geometry in novel ways. In particular, this new book establishes hyperbolic barycentric coordinates that are used to determine various hyperbolic triangle centers just as Euclidean barycentric coordinates are commonly used to determine various Euclidean triangle centers. The hunt for Euclidean triangle centers is an old tradition in Euclidean geometry, resulting in a repertoire of more than three thousand triangle centers that are known by their barycentric coordinate representations. The aim of this book is to initiate a fully analogous hunt for hyperbolic triangle centers that will broaden the repertoire of hyperbolic triangle centers provided here.