[PDF] Analytical And Numerical Methods For Volterra Equations - eBooks Review

Analytical And Numerical Methods For Volterra Equations


Analytical And Numerical Methods For Volterra Equations
DOWNLOAD

Download Analytical And Numerical Methods For Volterra Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analytical And Numerical Methods For Volterra Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Analytical And Numerical Methods For Volterra Equations


Analytical And Numerical Methods For Volterra Equations
DOWNLOAD
Author : Peter Linz
language : en
Publisher: SIAM
Release Date : 1985-07-01

Analytical And Numerical Methods For Volterra Equations written by Peter Linz and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 1985-07-01 with Mathematics categories.


Presents integral equations methods for the solution of Volterra equations for those who need to solve real-world problems.



Analytical And Numerical Methods For Volterra Equations


Analytical And Numerical Methods For Volterra Equations
DOWNLOAD
Author : Peter Linz
language : en
Publisher: SIAM
Release Date : 1985-01-01

Analytical And Numerical Methods For Volterra Equations written by Peter Linz and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 1985-01-01 with Mathematics categories.


Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.



Ordinary Differential Equations And Integral Equations


Ordinary Differential Equations And Integral Equations
DOWNLOAD
Author : C.T.H. Baker
language : en
Publisher: Gulf Professional Publishing
Release Date : 2001-07-04

Ordinary Differential Equations And Integral Equations written by C.T.H. Baker and has been published by Gulf Professional Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-07-04 with Juvenile Nonfiction categories.


/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods). John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?" Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices. The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour. Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems. Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions. Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions. Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods. Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory. Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages. Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields. Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems. Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems. Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems. Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions. The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect. Many phenomena incorporate noise, and the numerical solution of stochastic differential equations has developed as a relatively new item of study in the area. Keven Burrage, Pamela Burrage and Taketomo Mitsui review the way numerical methods for solving stochastic differential equations (SDE's) are constructed. One of the more recent areas to attract scrutiny has been the area of differential equations with after-effect (retarded, delay, or neutral delay differential equations) and in this volume we include a number of papers on evolutionary problems in this area. The paper of Genna Bocharov and Fathalla Rihan conveys the importance in mathematical biology of models using retarded differential equations. The contribution by Christopher Baker is intended to convey much of the background necessary for the application of numerical methods and includes some original results on stability and on the solution of approximating equations. Alfredo Bellen, Nicola Guglielmi and Marino Zennaro contribute to the analysis of stability of numerical solutions of nonlinear neutral differential equations. Koen Engelborghs, Tatyana Luzyanina, Dirk Roose, Neville Ford and Volker Wulf consider the numerics of bifurcation in delay differential equations. Evelyn Buckwar contributes a paper indicating the construction and analysis of a numerical strategy for stochastic delay differential equations (SDDEs). This volume contains contributions on both Volterra and Fredholm-type integral equations. Christopher Baker responded to a late challenge to craft a review of the theory of the basic numerics of Volterra integral and integro-differential equations. Simon Shaw and John Whiteman discuss Galerkin methods for a type of Volterra integral equation that arises in modelling viscoelasticity. A subclass of boundary-value problems for ordinary differential equation comprises eigenvalue problems such as Sturm-Liouville problems (SLP) and Schrödinger equations. Liviu Ixaru describes the advances made over the last three decades in the field of piecewise perturbation methods for the numerical solution of Sturm-Liouville problems in general and systems of Schrödinger equations in particular. Alan Andrew surveys the asymptotic correction method for regular Sturm-Liouville problems. Leon Greenberg and Marco Marletta survey methods for higher-order Sturm-Liouville problems. R. Moore in the 1960s first showed the feasibility of validated solutions of differential equations, that is, of computing guaranteed enclosures of solutions. Boundary integral equations. Numerical solution of integral equations associated with boundary-value problems has experienced continuing interest. Peter Junghanns and Bernd Silbermann present a selection of modern results concerning the numerical analysis of one-dimensional Cauchy singular integral equations, in particular the stability of operator sequences associated with different projection methods. Johannes Elschner and Ivan Graham summarize the most important results achieved in the last years about the numerical solution of one-dimensional integral equations of Mellin type of means of projection methods and, in particular, by collocation methods. A survey of results on quadrature methods for solving boundary integral equations is presented by Andreas Rathsfeld. Wolfgang Hackbusch and Boris Khoromski present a novel approach for a very efficient treatment of integral operators. Ernst Stephan examines multilevel methods for the h-, p- and hp- versions of the boundary element method, including pre-conditioning techniques. George Hsiao, Olaf Steinbach and Wolfgang Wendland analyze various boundary element methods employed in local discretization schemes.



The Numerical Solution Of Volterra Equations


The Numerical Solution Of Volterra Equations
DOWNLOAD
Author : Hermann Brunner
language : en
Publisher: North Holland
Release Date : 1986

The Numerical Solution Of Volterra Equations written by Hermann Brunner and has been published by North Holland this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986 with Mathematics categories.


This monograph presents the theory and modern numerical analysis of Volterra integral and integro-differential equations, including equations with weakly singular kernels. While the research worker will find an up-to-date account of recent developments of numerical methods for such equations, including an extensive bibliography, the authors have tried to make the book accessible to the non-specialist possessing only a limited knowledge of numerical analysis. After an introduction to the theory of Volterra equations and to numerical integration, the book covers linear methods and Runge-Kutta methods, collocation methods based on polynomial spline functions, stability of numerical methods, and it surveys computer programs for Volterra integral and integro-differential equations.



Mathematical Analysis And Numerical Methods


Mathematical Analysis And Numerical Methods
DOWNLOAD
Author : Aliaa Burqan
language : en
Publisher: Springer Nature
Release Date : 2024-10-05

Mathematical Analysis And Numerical Methods written by Aliaa Burqan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-05 with Mathematics categories.


This book presents a thoughtful compilation of chapters derived from the proceedings of the 8th International Arab Conference on Mathematics and Computations (IACMC 2023), held at Zarqa University in Zarqa, Jordan, from 10–12 May 2023. Encompassing a broad spectrum of themes crucial to contemporary research and development, the book delved into subjects ranging from partial and differential equations to fractional calculus, from probability and statistics to graph theory, and from approximation theory to nonlinear dynamics. Moreover, it explores pivotal areas such as numerical analysis and methods, as well as fostering interdisciplinary mathematical research initiatives. Building upon the legacy of its predecessors, IACMC 2023 served as a premier platform for scholars, researchers and industry professionals to converge and exchange insights on a myriad of cutting-edge advancements and practical applications within the realm of mathematical sciences. This volume encapsulates the essence of IACMC 2023, offering readers a comprehensive overview of the latest breakthroughs and trends in mathematical sciences while serving as a testament to the collaborative spirit and intellectual vigor that define this esteemed conference series.



Surveys On Solution Methods For Inverse Problems


Surveys On Solution Methods For Inverse Problems
DOWNLOAD
Author : David Colton
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Surveys On Solution Methods For Inverse Problems written by David Colton and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Inverse problems are concerned with determining causes for observed or desired effects. Problems of this type appear in many application fields both in science and in engineering. The mathematical modelling of inverse problems usually leads to ill-posed problems, i.e., problems where solutions need not exist, need not be unique or may depend discontinuously on the data. For this reason, numerical methods for solving inverse problems are especially difficult, special methods have to be developed which are known under the term "regularization methods". This volume contains twelve survey papers about solution methods for inverse and ill-posed problems and about their application to specific types of inverse problems, e.g., in scattering theory, in tomography and medical applications, in geophysics and in image processing. The papers have been written by leading experts in the field and provide an up-to-date account of solution methods for inverse problems.



Solution Methods For Integral Equations


Solution Methods For Integral Equations
DOWNLOAD
Author : M. A. Goldberg
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-21

Solution Methods For Integral Equations written by M. A. Goldberg and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-21 with Social Science categories.




Abel Integral Equations


Abel Integral Equations
DOWNLOAD
Author : Rudolf Gorenflo
language : en
Publisher: Springer
Release Date : 2006-11-14

Abel Integral Equations written by Rudolf Gorenflo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.


In many fields of application of mathematics, progress is crucially dependent on the good flow of information between (i) theoretical mathematicians looking for applications, (ii) mathematicians working in applications in need of theory, and (iii) scientists and engineers applying mathematical models and methods. The intention of this book is to stimulate this flow of information. In the first three chapters (accessible to third year students of mathematics and physics and to mathematically interested engineers) applications of Abel integral equations are surveyed broadly including determination of potentials, stereology, seismic travel times, spectroscopy, optical fibres. In subsequent chapters (requiring some background in functional analysis) mapping properties of Abel integral operators and their relation to other integral transforms in various function spaces are investi- gated, questions of existence and uniqueness of solutions of linear and nonlinear Abel integral equations are treated, and for equations of the first kind problems of ill-posedness are discussed. Finally, some numerical methods are described. In the theoretical parts, emphasis is put on the aspects relevant to applications.



Advanced Computing In Industrial Mathematics


Advanced Computing In Industrial Mathematics
DOWNLOAD
Author : Krassimir Georgiev
language : en
Publisher: Springer
Release Date : 2018-09-27

Advanced Computing In Industrial Mathematics written by Krassimir Georgiev and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-27 with Technology & Engineering categories.


This book gathers the peer-reviewed proceedings of the 12th Annual Meeting of the Bulgarian Section of the Society for Industrial and Applied Mathematics, BGSIAM’17, held in Sofia, Bulgaria, in December 2017. The general theme of BGSIAM’17 was industrial and applied mathematics, with a particular focus on: high-performance computing, numerical methods and algorithms, analysis of partial differential equations and their applications, mathematical biology, control and uncertain systems, stochastic models, molecular dynamics, neural networks, genetic algorithms, metaheuristics for optimization problems, generalized nets, and Big Data.



Spline Functions And The Theory Of Wavelets


Spline Functions And The Theory Of Wavelets
DOWNLOAD
Author : Serge Dubuc
language : en
Publisher: American Mathematical Soc.
Release Date : 1999

Spline Functions And The Theory Of Wavelets written by Serge Dubuc and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999 with Mathematics categories.


This work is based on a series of thematic workshops on the theory of wavelets and the theory of splines. Important applications are included. The volume is divided into four parts: Spline Functions, Theory of Wavelets, Wavelets in Physics, and Splines and Wavelets in Statistics. Part one presents the broad spectrum of current research in the theory and applications of spline functions. Theory ranges from classical univariate spline approximation to an abstract framework for multivariate spline interpolation. Applications include scattered-data interpolation, differential equations and various techniques in CAGD. Part two considers two developments in subdivision schemes; one for uniform regularity and the other for irregular situations. The latter includes construction of multidimensional wavelet bases and determination of bases with a given time frequency localization. In part three, the multifractal formalism is extended to fractal functions involving oscillating singularites. There is a review of a method of quantization of classical systems based on the theory of coherent states. Wavelets are applied in the domains of atomic, molecular and condensed-matter physics. In part four, ways in which wavelets can be used to solve important function estimation problems in statistics are shown. Different wavelet estimators are proposed in the following distinct cases: functions with discontinuities, errors that are no longer Gaussian, wavelet estimation with robustness, and error distribution that is no longer stationary. Some of the contributions in this volume are current research results not previously available in monograph form. The volume features many applications and interesting new theoretical developments. Readers will find powerful methods for studying irregularities in mathematics, physics, and statistics.