Analytics Machine Learning And Artificial Intelligence

DOWNLOAD
Download Analytics Machine Learning And Artificial Intelligence PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analytics Machine Learning And Artificial Intelligence book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Artificial Intelligence Trends For Data Analytics Using Machine Learning And Deep Learning Approaches
DOWNLOAD
Author : K. Gayathri Devi
language : en
Publisher:
Release Date : 2024-10-04
Artificial Intelligence Trends For Data Analytics Using Machine Learning And Deep Learning Approaches written by K. Gayathri Devi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-04 with Computers categories.
This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems.
Data Analytics And Ai
DOWNLOAD
Author : Jay Liebowitz
language : en
Publisher: CRC Press
Release Date : 2020-08-06
Data Analytics And Ai written by Jay Liebowitz and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-06 with Computers categories.
Analytics and artificial intelligence (AI), what are they good for? The bandwagon keeps answering, absolutely everything! Analytics and artificial intelligence have captured the attention of everyone from top executives to the person in the street. While these disciplines have a relatively long history, within the last ten or so years they have exploded into corporate business and public consciousness. Organizations have rushed to embrace data-driven decision making. Companies everywhere are turning out products boasting that "artificial intelligence is included." We are indeed living in exciting times. The question we need to ask is, do we really know how to get business value from these exciting tools? Unfortunately, both the analytics and AI communities have not done a great job in collaborating and communicating with each other to build the necessary synergies. This book bridges the gap between these two critical fields. The book begins by explaining the commonalities and differences in the fields of data science, artificial intelligence, and autonomy by giving a historical perspective for each of these fields, followed by exploration of common technologies and current trends in each field. The book also readers introduces to applications of deep learning in industry with an overview of deep learning and its key architectures, as well as a survey and discussion of the main applications of deep learning. The book also presents case studies to illustrate applications of AI and analytics. These include a case study from the healthcare industry and an investigation of a digital transformation enabled by AI and analytics transforming a product-oriented company into one delivering solutions and services. The book concludes with a proposed AI-informed data analytics life cycle to be applied to unstructured data.
Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges
DOWNLOAD
Author : Aboul Ella Hassanien
language : en
Publisher: Springer Nature
Release Date : 2020-12-14
Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges written by Aboul Ella Hassanien and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-14 with Computers categories.
This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.
Machine Learning And Artificial Intelligence For Agricultural Economics
DOWNLOAD
Author : Chandrasekar Vuppalapati
language : en
Publisher: Springer Nature
Release Date : 2021-10-04
Machine Learning And Artificial Intelligence For Agricultural Economics written by Chandrasekar Vuppalapati and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-04 with Business & Economics categories.
This book discusses machine learning and artificial intelligence (AI) for agricultural economics. It is written with a view towards bringing the benefits of advanced analytics and prognostics capabilities to small scale farmers worldwide. This volume provides data science and software engineering teams with the skills and tools to fully utilize economic models to develop the software capabilities necessary for creating lifesaving applications. The book introduces essential agricultural economic concepts from the perspective of full-scale software development with the emphasis on creating niche blue ocean products. Chapters detail several agricultural economic and AI reference architectures with a focus on data integration, algorithm development, regression, prognostics model development and mathematical optimization. Upgrading traditional AI software development paradigms to function in dynamic agricultural and economic markets, this volume will be of great use to researchers and students in agricultural economics, data science, engineering, and machine learning as well as engineers and industry professionals in the public and private sectors.
Data Analytics And Ai
DOWNLOAD
Author : Jay Liebowitz
language : en
Publisher: CRC Press
Release Date : 2020-08-06
Data Analytics And Ai written by Jay Liebowitz and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-06 with Computers categories.
Analytics and artificial intelligence (AI), what are they good for? The bandwagon keeps answering, absolutely everything! Analytics and artificial intelligence have captured the attention of everyone from top executives to the person in the street. While these disciplines have a relatively long history, within the last ten or so years they have exploded into corporate business and public consciousness. Organizations have rushed to embrace data-driven decision making. Companies everywhere are turning out products boasting that "artificial intelligence is included." We are indeed living in exciting times. The question we need to ask is, do we really know how to get business value from these exciting tools? Unfortunately, both the analytics and AI communities have not done a great job in collaborating and communicating with each other to build the necessary synergies. This book bridges the gap between these two critical fields. The book begins by explaining the commonalities and differences in the fields of data science, artificial intelligence, and autonomy by giving a historical perspective for each of these fields, followed by exploration of common technologies and current trends in each field. The book also readers introduces to applications of deep learning in industry with an overview of deep learning and its key architectures, as well as a survey and discussion of the main applications of deep learning. The book also presents case studies to illustrate applications of AI and analytics. These include a case study from the healthcare industry and an investigation of a digital transformation enabled by AI and analytics transforming a product-oriented company into one delivering solutions and services. The book concludes with a proposed AI-informed data analytics life cycle to be applied to unstructured data.
Analytics Machine Learning And Artificial Intelligence
DOWNLOAD
Author : Suparna Dhar
language : en
Publisher: Springer Nature
Release Date : 2024-11-20
Analytics Machine Learning And Artificial Intelligence written by Suparna Dhar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-20 with Computers categories.
This book constitutes the refereed proceedings of the Second Analytics Global Conference on Analytics, Machine Learning, and Artificial Intelligence, AGC 2024, held in Kolkata, India, during March 6-7, 2024. The 15 full papers and 3 short papers presented in these proceedings were carefully reviewed and selected from 60 submissions. The papers are organized in these topical sections: applications of analytics in business; analytics methods, tools & techniques.
Artificial Intelligence And Machine Learning In Business Management
DOWNLOAD
Author : Sandeep Kumar Panda
language : en
Publisher: CRC Press
Release Date : 2021-11-04
Artificial Intelligence And Machine Learning In Business Management written by Sandeep Kumar Panda and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-04 with Business & Economics categories.
Artificial Intelligence and Machine Learning in Business Management The focus of this book is to introduce artificial intelligence (AI) and machine learning (ML) technologies into the context of business management. The book gives insights into the implementation and impact of AI and ML to business leaders, managers, technology developers, and implementers. With the maturing use of AI or ML in the field of business intelligence, this book examines several projects with innovative uses of AI beyond data organization and access. It follows the Predictive Modeling Toolkit for providing new insight on how to use improved AI tools in the field of business. It explores cultural heritage values and risk assessments for mitigation and conservation and discusses on-shore and off-shore technological capabilities with spatial tools for addressing marketing and retail strategies, and insurance and healthcare systems. Taking a multidisciplinary approach for using AI, this book provides a single comprehensive reference resource for undergraduate, graduate, business professionals, and related disciplines.
Big Data
DOWNLOAD
Author : Balamurugan Balusamy
language : en
Publisher: John Wiley & Sons
Release Date : 2021-03-15
Big Data written by Balamurugan Balusamy and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-15 with Mathematics categories.
Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, “Big Data,” the book moves on to discuss every stage of the lifecycle of Big Data. You’ll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You’ll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you’ll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information. Executives and managers who lead teams responsible for keeping or understanding large datasets will also benefit from this book.
Hbr S 10 Must Reads On Ai Analytics And The New Machine Age With Bonus Article Why Every Company Needs An Augmented Reality Strategy By Michael E Porter And James E Heppelmann
DOWNLOAD
Author : Harvard Business Review
language : en
Publisher: Harvard Business Press
Release Date : 2018-12-24
Hbr S 10 Must Reads On Ai Analytics And The New Machine Age With Bonus Article Why Every Company Needs An Augmented Reality Strategy By Michael E Porter And James E Heppelmann written by Harvard Business Review and has been published by Harvard Business Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-24 with Business & Economics categories.
Intelligent machines are revolutionizing business. Machine learning and data analytics are powering a wave of groundbreaking technologies. Is your company ready? If you read nothing else on how intelligent machines are revolutionizing business, read these 10 articles. We've combed through hundreds of Harvard Business Review articles and selected the most important ones to help you understand how these technologies work together, how to adopt them, and why your strategy can't ignore them. In this book you'll learn how: Data science, driven by artificial intelligence and machine learning, is yielding unprecedented business insights Blockchain has the potential to restructure the economy Drones and driverless vehicles are becoming essential tools 3-D printing is making new business models possible Augmented reality is transforming retail and manufacturing Smart speakers are redefining the rules of marketing Humans and machines are working together to reach new levels of productivity This collection of articles includes "Artificial Intelligence for the Real World," by Thomas H. Davenport and Rajeev Ronanki; "Stitch Fix's CEO on Selling Personal Style to the Mass Market," by Katrina Lake; "Algorithms Need Managers, Too," by Michael Luca, Jon Kleinberg, and Sendhil Mullainathan; "Marketing in the Age of Alexa," by Niraj Dawar; "Why Every Organization Needs an Augmented Reality Strategy," by Michael E. Porter and James E. Heppelmann; "Drones Go to Work," by Chris Anderson; "The Truth About Blockchain," by Marco Iansiti and Karim R. Lakhani; "The 3-D Printing Playbook," by Richard A. D’Aveni; "Collaborative Intelligence: Humans and AI Are Joining Forces," by H. James Wilson and Paul R. Daugherty; "When Your Boss Wears Metal Pants," by Walter Frick; and "Managing Our Hub Economy," by Marco Iansiti and Karim R. Lakhani.
Data Analytics In Bioinformatics
DOWNLOAD
Author : Rabinarayan Satpathy
language : en
Publisher: John Wiley & Sons
Release Date : 2021-01-20
Data Analytics In Bioinformatics written by Rabinarayan Satpathy and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-20 with Computers categories.
Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.