Application Of Similarity Measure On M Polar Interval Valued Neutrosophic Set In Decision Making In Sports

DOWNLOAD
Download Application Of Similarity Measure On M Polar Interval Valued Neutrosophic Set In Decision Making In Sports PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Application Of Similarity Measure On M Polar Interval Valued Neutrosophic Set In Decision Making In Sports book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Application Of Similarity Measure On M Polar Interval Valued Neutrosophic Set In Decision Making In Sports
DOWNLOAD
Author : Muhammad Saeed
language : en
Publisher: Infinite Study
Release Date : 2020-12-01
Application Of Similarity Measure On M Polar Interval Valued Neutrosophic Set In Decision Making In Sports written by Muhammad Saeed and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-01 with Mathematics categories.
In real life, most of the problems occurred by wrong decision making, while in sports it is mandatory for every player, coach, and technique director to make a good and an ideal decision. In this paper, the concept of similarity measure is used in the neutrosophic environment for decision making in a football game for the selection of players. The data is collected in interval-valued, while the new concept m-polar is illustrated as previous records of m matches played by players. m-polar structures provide multiple data on the concerned problem, so as a result the best solution can be developed for the selection problem. An m-polar Interval-valued Neutrosophic Set (mIVNS) is derived for the targeted task of player selection problem. Then some operations, properties, and distance measures are introduced on m-polar Interval-valued Neutrosophic Set (mIVNS). Distance-base Similarity Measure is illustrated to each player with an ideal set in mIVNS structure. In the end, the Algorithm is given for ideal decision-making in sports for the selection of players.
Neutrosophic Sets And Systems Vol 38 2020
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date :
Neutrosophic Sets And Systems Vol 38 2020 written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Neutrosophic Sets And Systems Vol 40 2021
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date :
Neutrosophic Sets And Systems Vol 40 2021 written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Neutrosophic Sets And Systems Vol 50 2022
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2022-06-01
Neutrosophic Sets And Systems Vol 50 2022 written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Mathematics categories.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation
Theory And Application Of Hypersoft Set
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2021-02-01
Theory And Application Of Hypersoft Set written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-01 with Mathematics categories.
Florentin Smarandache generalize the soft set to the hypersoft set by transforming the function 𝐹 into a multi-argument function. This extension reveals that the hypersoft set with neutrosophic, intuitionistic, and fuzzy set theory will be very helpful to construct a connection between alternatives and attributes. Also, the hypersoft set will reduce the complexity of the case study. The Book “Theory and Application of Hypersoft Set” focuses on theories, methods, algorithms for decision making and also applications involving neutrosophic, intuitionistic, and fuzzy information. Our goal is to develop a strong relationship with the MCDM solving techniques and to reduce the complexion in the methodologies. It is interesting that the hypersoft theory can be applied on any decision-making problem without the limitations of the selection of the values by the decision-makers. Some topics having applications in the area: Multi-criteria decision making (MCDM), Multi-criteria group decision making (MCGDM), shortest path selection, employee selection, e-learning, graph theory, medical diagnosis, probability theory, topology, and some more.
The Encyclopedia Of Neutrosophic Researchers 5th Volume
DOWNLOAD
Author : Florentin Smarandache
language : en
Publisher: Infinite Study
Release Date : 2023-11-01
The Encyclopedia Of Neutrosophic Researchers 5th Volume written by Florentin Smarandache and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-01 with Reference categories.
Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements. There are about 7,000 neutrosophic researchers, within 89 countries around the globe, that have produced about 4,000 publications and tenths of PhD and MSc theses, within more than two decades. This is the fifth volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation, with an introduction contains a short history of neutrosophics, together with links to the main papers and books.
Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond
DOWNLOAD
Author : Takaaki Fujita
language : en
Publisher: Infinite Study
Release Date : 2025-01-15
Advancing Uncertain Combinatorics Through Graphization Hyperization And Uncertainization Fuzzy Neutrosophic Soft Rough And Beyond written by Takaaki Fujita and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-15 with Mathematics categories.
This book represents the fourth volume in the series Collected Papers on Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond. This volume specifically delves into the concept of the HyperUncertain Set, building on the foundational advancements introduced in previous volumes. The series aims to explore the ongoing evolution of uncertain combinatorics through innovative methodologies such as graphization, hyperization, and uncertainization. These approaches integrate and extend core concepts from fuzzy, neutrosophic, soft, and rough set theories, providing robust frameworks to model and analyze the inherent complexity of real-world uncertainties. At the heart of this series lies combinatorics and set theory—cornerstones of mathematics that address the study of counting, arrangements, and the relationships between collections under defined rules. Traditionally, combinatorics has excelled in solving problems involving uncertainty, while advancements in set theory have expanded its scope to include powerful constructs like fuzzy and neutrosophic sets. These advanced sets bring new dimensions to uncertainty modeling by capturing not just binary truth but also indeterminacy and falsity. In this fourth volume, the integration of set theory with graph theory takes center stage, culminating in "graphized" structures such as hypergraphs and superhypergraphs. These structures, paired with innovations like Neutrosophic Oversets, Undersets, Offsets, and the Nonstandard Real Set, extend the boundaries of mathematical abstraction. This fusion of combinatorics, graph theory, and uncertain set theory creates a rich foundation for addressing the multidimensional and hierarchical uncertainties prevalent in both theoretical and applied domains. The book is structured into thirteen chapters, each contributing unique perspectives and advancements in the realm of HyperUncertain Sets and their related frameworks. The first chapter (Advancing Traditional Set Theory with Hyperfuzzy, Hyperneutrosophic, and Hyperplithogenic Sets) explores the evolution of classical set theory to better address the complexity and ambiguity of real-world phenomena. By introducing hierarchical structures like hyperstructures and superhyperstructures—created through iterative applications of power sets—it lays the groundwork for more abstract and adaptable mathematical tools. The focus is on extending three foundational frameworks: Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets into their hyperforms: Hyperfuzzy Sets, Hyperneutrosophic Sets, and Hyperplithogenic Sets. These advanced concepts are applied across diverse fields such as statistics, clustering, evolutionary theory, topology, decision-making, probability, and language theory. The goal is to provide a robust platform for future research in this expanding area of study. The second chapter (Applications and Mathematical Properties of Hyperneutrosophic and SuperHyperneutrosophic Sets) extends the work on Hyperfuzzy, Hyperneutrosophic, and Hyperplithogenic Sets by delving into their advanced applications and mathematical foundations. Building on prior research, it specifically examines Hyperneutrosophic and SuperHyperneutrosophic Sets, exploring their integration into: Neutrosophic Logic, Cognitive Maps,Graph Neural Networks, Classifiers, and Triplet Groups. The chapter also investigates their mathematical properties and applicability in addressing uncertainties and complexities inherent in various domains. These insights aim to inspire innovative uses of hypergeneralized sets in modern theoretical and applied research. The third chapter (New Extensions of Hyperneutrosophic Sets – Bipolar, Pythagorean, Double-Valued, and Interval-Valued Sets) studies advanced variations of Neutrosophic Sets, a mathematical framework defined by three membership functions: truth (T), indeterminacy (I), and falsity (F). By leveraging the concepts of Hyperneutrosophic and SuperHyperneutrosophic Sets, the study extends: Bipolar Neutrosophic Sets, Interval-Valued Neutrosophic Sets, Pythagorean Neutrosophic Sets, and Double-Valued Neutrosophic Sets. These extensions address increasingly complex scenarios, and a brief analysis is provided to explore their potential applications and mathematical underpinnings. Building on prior research, the fourth chapter (Hyperneutrosophic Extensions of Complex, Single-Valued Triangular, Fermatean, and Linguistic Sets) expands on Neutrosophic Set theory by incorporating recent advancements in Hyperneutrosophic and SuperHyperneutrosophic Sets. The study focuses on extending: Complex Neutrosophic Sets, Single-Valued Triangular Neutrosophic Sets, Fermatean Neutrosophic Sets, and Linguistic Neutrosophic Sets. The analysis highlights the mathematical structures of these hyperextensions and explores their connections with existing set-theoretic concepts, offering new insights into managing uncertainty in multidimensional challenges. The fifth chapter (Advanced Extensions of Hyperneutrosophic Sets – Dynamic, Quadripartitioned, Pentapartitioned, Heptapartitioned, and m-Polar) delves deeper into the evolution of Neutrosophic Sets by exploring advanced frameworks designed for even more intricate applications. New extensions include: Dynamic Neutrosophic Sets, Quadripartitioned Neutrosophic Sets, Pentapartitioned Neutrosophic Sets, Heptapartitioned Neutrosophic Sets, and m-Polar Neutrosophic Sets. These developments build upon foundational research and aim to provide robust tools for addressing multidimensional and highly nuanced problems. The sixth chapter (Advanced Extensions of Hyperneutrosophic Sets – Cubic, Trapezoidal, q-Rung Orthopair, Overset, Underset, and Offset) builds upon the Neutrosophic framework, which employs truth (T), indeterminacy (I), and falsity (F) to address uncertainty. Leveraging advancements in Hyperneutrosophic and SuperHyperneutrosophic Sets, the study extends: Cubic Neutrosophic Sets, Trapezoidal Neutrosophic Sets, q-Rung Orthopair Neutrosophic Sets, Neutrosophic Oversets, Neutrosophic Undersets, and Neutrosophic Offsets. The chapter provides a brief analysis of these new set types, exploring their properties and potential applications in solving multidimensional problems. The seventh chapter (Specialized Classes of Hyperneutrosophic Sets – Support, Paraconsistent, and Faillibilist Sets) delves into unique classes of Neutrosophic Sets extended through Hyperneutrosophic and SuperHyperneutrosophic frameworks to tackle advanced theoretical challenges. The study introduces and extends: Support Neutrosophic Sets, Neutrosophic Intuitionistic Sets, Neutrosophic Paraconsistent Sets, Neutrosophic Faillibilist Sets, Neutrosophic Paradoxist and Pseudo-Paradoxist Sets, Neutrosophic Tautological and Nihilist Sets, Neutrosophic Dialetheist Sets, and Neutrosophic Trivialist Sets. These extensions address highly nuanced aspects of uncertainty, further advancing the theoretical foundation of Neutrosophic mathematics. The eight chapter (MultiNeutrosophic Sets and Refined Neutrosophic Sets) focuses on two advanced Neutrosophic frameworks: MultiNeutrosophic Sets, and Refined Neutrosophic Sets. Using Hyperneutrosophic and nn-SuperHyperneutrosophic Sets, these extensions are analyzed in detail, highlighting their adaptability to multidimensional and complex scenarios. Examples and mathematical properties are provided to showcase their practical relevance and theoretical depth. The ninth chapter (Advanced Hyperneutrosophic Set Types – Type-m, Nonstationary, Subset-Valued, and Complex Refined) explores extensions of the Neutrosophic framework, focusing on: Type-m Neutrosophic Sets, Nonstationary Neutrosophic Sets, Subset-Valued Neutrosophic Sets, and Complex Refined Neutrosophic Sets. These extensions utilize the Hyperneutrosophic and SuperHyperneutrosophic frameworks to address advanced challenges in uncertainty management, expanding their mathematical scope and practical applications. The tenth chapter (Hyperfuzzy Hypersoft Sets and Hyperneutrosophic Hypersoft Sets) integrates the principles of Fuzzy, Neutrosophic, and Soft Sets with hyperstructures to introduce: Hyperfuzzy Hypersoft Sets, and Hyperneutrosophic Hypersoft Sets. These frameworks are designed to manage complex uncertainty through hierarchical structures based on power sets, with detailed analysis of their properties and theoretical potential. The eleventh chapter (A Review of SuperFuzzy, SuperNeutrosophic, and SuperPlithogenic Sets) revisits and extends the study of advanced set concepts such as: SuperFuzzy Sets, Super-Intuitionistic Fuzzy Sets,Super-Neutrosophic Sets, and SuperPlithogenic Sets, including their specialized variants like quadripartitioned, pentapartitioned, and heptapartitioned forms. The work serves as a consolidation of existing studies while highlighting potential directions for future research in hierarchical uncertainty modeling. Focusing on decision-making under uncertainty, the tweve chapter (Advanced SuperHypersoft and TreeSoft Sets) introduces six novel concepts: SuperHypersoft Rough Sets,SuperHypersoft Expert Sets, Bipolar SuperHypersoft Sets, TreeSoft Rough Sets, TreeSoft Expert Sets, and Bipolar TreeSoft Sets. Definitions, properties, and potential applications of these frameworks are explored to enhance the flexibility of soft set-based models. The final chapter (Hierarchical Uncertainty in Fuzzy, Neutrosophic, and Plithogenic Sets) provides a comprehensive survey of hierarchical uncertainty frameworks, with a focus on Plithogenic Sets and their advanced extensions: Hyperplithogenic Sets, SuperHyperplithogenic Sets. It examines relationships with other major concepts such as Intuitionistic Fuzzy Sets, Vague Sets, Picture Fuzzy Sets, Hesitant Fuzzy Sets, and multi-partitioned Neutrosophic Sets, consolidating their theoretical interconnections for modeling complex systems. This volume not only reflects the dynamic interplay between theoretical rigor and practical application but also serves as a beacon for future research in uncertainty modeling, offering advanced tools to tackle the intricacies of modern challenges.
Some Types Of Hyperneutrosophic Set 3 Dynamic Quadripartitioned Pentapartitioned Heptapartitioned M Polar
DOWNLOAD
Author :
language : en
Publisher: Infinite Study
Release Date : 2025-01-01
Some Types Of Hyperneutrosophic Set 3 Dynamic Quadripartitioned Pentapartitioned Heptapartitioned M Polar written by and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-01 with Mathematics categories.
This paper builds upon the foundation established in [50, 51]. The Neutrosophic Set provides a robust mathematical framework for handling uncertainty, defined by three membership functions: truth, indeterminacy, and falsity. Recent developments have introduced extensions such as the Hyperneutrosophic Set and SuperHyperneutrosophic Set to tackle increasingly complex and multidimensional problems. In this study, we explore further extensions, including the Dynamic Neutrosophic Set, Quadripartitioned Neutrosophic Set, Pentapartitioned Neutrosophic Set, Heptapartitioned Neutrosophic Set, and m-Polar Neutrosophic Set, to address advanced challenges and applications.
Interval Neutrosophic Sets And Logic Theory And Applications In Computing
DOWNLOAD
Author : Haibin Wang
language : en
Publisher: Infinite Study
Release Date : 2005
Interval Neutrosophic Sets And Logic Theory And Applications In Computing written by Haibin Wang and has been published by Infinite Study this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.
This book presents the advancements and applications of neutrosophics, which are generalizations of fuzzy logic, fuzzy set, and imprecise probability. The neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics are increasingly used in engineering applications (especially for software and information fusion), medicine, military, cybernetics, physics.In the last chapter a soft semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality semantic Web Services agent. The intelligent inference engine module of soft semantic Web Services agent is implemented using interval neutrosophic logic.
Neutrosophic Sets In Decision Analysis And Operations Research
DOWNLOAD
Author : Abdel-Basset, Mohamed
language : en
Publisher: IGI Global
Release Date : 2019-12-27
Neutrosophic Sets In Decision Analysis And Operations Research written by Abdel-Basset, Mohamed and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-27 with Computers categories.
In information technology, the concepts of cost, time, delivery, space, quality, durability, and price have gained greater importance in solving managerial decision-making problems in supply chain models, transportation problems, and inventory control problems. Moreover, competition is becoming tougher in imprecise environments. Neutrosophic sets and logic are gaining significant attention in solving real-life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. Neutrosophic Sets in Decision Analysis and Operations Research is a critical, scholarly publication that examines various aspects of organizational research through mathematical equations and algorithms and presents neutrosophic theories and their applications in various optimization fields. Featuring a wide range of topics such as information retrieval, decision making, and matrices, this book is ideal for engineers, technicians, designers, mathematicians, practitioners of mathematics in economy and technology, scientists, academicians, professionals, managers, researchers, and students.