[PDF] Applications From Engineering With Matlab Concepts - eBooks Review

Applications From Engineering With Matlab Concepts


Applications From Engineering With Matlab Concepts
DOWNLOAD

Download Applications From Engineering With Matlab Concepts PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications From Engineering With Matlab Concepts book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Applications From Engineering With Matlab Concepts


Applications From Engineering With Matlab Concepts
DOWNLOAD
Author : Jan Valdman
language : en
Publisher: BoD – Books on Demand
Release Date : 2016-07-07

Applications From Engineering With Matlab Concepts written by Jan Valdman and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-07 with Computers categories.


The book presents a collection of MATLAB-based chapters of various engineering background. Instead of giving exhausting amount of technical details, authors were rather advised to explain relations of their problems to actual MATLAB concepts. So, whenever possible, download links to functioning MATLAB codes were added and a potential reader can do own testing. Authors are typically scientists with interests in modeling in MATLAB. Chapters include image and signal processing, mechanics and dynamics, models and data identification in biology, fuzzy logic, discrete event systems and data acquisition systems.



Optimization Concepts And Applications In Engineering


Optimization Concepts And Applications In Engineering
DOWNLOAD
Author : Ashok D. Belegundu
language : en
Publisher: Cambridge University Press
Release Date : 2011-03-28

Optimization Concepts And Applications In Engineering written by Ashok D. Belegundu and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-28 with Computers categories.


In this revised and enhanced second edition of Optimization Concepts and Applications in Engineering, the already robust pedagogy has been enhanced with more detailed explanations, an increased number of solved examples and end-of-chapter problems. The source codes are now available free on multiple platforms. It is vitally important to meet or exceed previous quality and reliability standards while at the same time reducing resource consumption. This textbook addresses this critical imperative integrating theory, modeling, the development of numerical methods, and problem solving, thus preparing the student to apply optimization to real-world problems. This text covers a broad variety of optimization problems using: unconstrained, constrained, gradient, and non-gradient techniques; duality concepts; multiobjective optimization; linear, integer, geometric, and dynamic programming with applications; and finite element-based optimization. It is ideal for advanced undergraduate or graduate courses and for practising engineers in all engineering disciplines, as well as in applied mathematics.



Matlab With Applications To Engineering Physics And Finance


Matlab With Applications To Engineering Physics And Finance
DOWNLOAD
Author : David Baez-Lopez
language : en
Publisher: CRC Press
Release Date : 2009-10-28

Matlab With Applications To Engineering Physics And Finance written by David Baez-Lopez and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-28 with Mathematics categories.


Master the tools of MATLAB through hands-on examplesShows How to Solve Math Problems Using MATLABThe mathematical software MATLAB integrates computation, visualization, and programming to produce a powerful tool for a number of different tasks in mathematics. Focusing on the MATLAB toolboxes especially dedicated to science, finance, and engineering



Practical Matlab Applications For Engineers


Practical Matlab Applications For Engineers
DOWNLOAD
Author : Misza Kalechman
language : en
Publisher: CRC Press
Release Date : 2018-10-08

Practical Matlab Applications For Engineers written by Misza Kalechman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-08 with Mathematics categories.


Practical Matlab Applications for Engineers provides a tutorial for those with a basic understanding of Matlab®. It can be used to follow Misza Kalechman’s, Practical Matlab Basics for Engineers (cat no. 47744). This volume explores the concepts and Matlab tools used in the solution of advanced course work for engineering and technology students. It covers the material encountered in the typical engineering and technology programs at most colleges. It illustrates the direct connection between theory and real applications. Each chapter reviews basic concepts and then explores those concepts with a number of worked out examples.



Practical Matlab Basics For Engineers


Practical Matlab Basics For Engineers
DOWNLOAD
Author : Misza Kalechman
language : en
Publisher: CRC Press
Release Date : 2018-10-08

Practical Matlab Basics For Engineers written by Misza Kalechman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-08 with Mathematics categories.


A comprehensive and accessible primer, this tutorial immerses engineers and engineering students in the essential technical skills that will allow them to put Matlab® to immediate use. The book covers concepts such as: functions, algebra, geometry, arrays, vectors, matrices, trigonometry, graphs, pre-calculus and calculus. It then delves into the Matlab language, covering syntax rules, notation, operations, computational programming, and general problem solving in the areas of applied mathematics and general physics. This knowledge can be used to explore the basic applications that are detailed in Misza Kalechman’s companion volume, Practical Matlab Applications for Engineers (cat no. 47760). .



Digital Image Processing


Digital Image Processing
DOWNLOAD
Author : Rafael C. Gonzalez
language : en
Publisher:
Release Date : 2018

Digital Image Processing written by Rafael C. Gonzalez and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Image processing categories.




Matlab For Mechanical Engineers


Matlab For Mechanical Engineers
DOWNLOAD
Author : Rao V. Dukkipati
language : en
Publisher:
Release Date : 2009

Matlab For Mechanical Engineers written by Rao V. Dukkipati and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Automatic control categories.


Presents an introduction to MATLAB basics along with MATLAB commands. This book includes computer aided design and analysis using MATLAB with the Symbolic Math Tool box and the Control System Tool box. It intends to improve the programming skills of students using MATLAB environment and to use it as a tool in solving problems in engineering.



Engineering Mathematics With Matlab


Engineering Mathematics With Matlab
DOWNLOAD
Author : Won Y. Yang et. al
language : en
Publisher: Won Y. Yang
Release Date : 2019-02-01

Engineering Mathematics With Matlab written by Won Y. Yang et. al and has been published by Won Y. Yang this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-01 with Antiques & Collectibles categories.


Chapter 1: Vectors and Matrices 1.1 Vectors 1.1.1 Geometry with Vector 1.1.2 Dot Product 1.1.3 Cross Product 1.1.4 Lines and Planes 1.1.5 Vector Space 1.1.6 Coordinate Systems 1.1.7 Gram-Schmidt Orthonolization 1.2 Matrices 1.2.1 Matrix Algebra 1.2.2 Rank and Row/Column Spaces 1.2.3 Determinant and Trace 1.2.4 Eigenvalues and Eigenvectors 1.2.5 Inverse of a Matrix 1.2.6 Similarity Transformation and Diagonalization 1.2.7 Special Matrices 1.2.8 Positive Definiteness 1.2.9 Matrix Inversion Lemma 1.2.10 LU, Cholesky, QR, and Singular Value Decompositions 1.2.11 Physical Meaning of Eigenvalues/Eigenvectors 1.3 Systems of Linear Equations 1.3.1 Nonsingular Case 1.3.2 Undetermined Case - Minimum-Norm Solution 1.3.3 Overdetermined Case - Least-Squares Error Solution 1.3.4 Gauss(ian) Elimination 1.3.5 RLS (Recursive Least Squares) Algorithm Problems Chapter 2: Vector Calculus 2.1 Derivatives 2.2 Vector Functions 2.3 Velocity and Acceleration 2.4 Divergence and Curl 2.5 Line Integrals and Path Independence 2.5.1 Line Integrals 2.5.2 Path Independence 2.6 Double Integrals 2.7 Green's Theorem 2.8 Surface Integrals 2.9 Stokes' Theorem 2.10 Triple Integrals 2.11 Divergence Theorem Problems Chapter 3: Ordinary Differential Equation 3.1 First-Order Differential Equations 3.1.1 Separable Equations 3.1.2 Exact Differential Equations and Integrating Factors 3.1.3 Linear First-Order Differential Equations 3.1.4 Nonlinear First-Order Differential Equations 3.1.5 Systems of First-Order Differential Equations 3.2 Higher-Order Differential Equations 3.2.1 Undetermined Coefficients 3.2.2 Variation of Parameters 3.2.3 Cauchy-Euler Equations 3.2.4 Systems of Linear Differential Equations 3.3 Special Second-Order Linear ODEs 3.3.1 Bessel's Equation 3.3.2 Legendre's Equation 3.3.3 Chebyshev's Equation 3.3.4 Hermite's Equation 3.3.5 Laguerre's Equation 3.4 Boundary Value Problems Problems Chapter 4: Laplace Transform 4.1 Definition of the Laplace Transform 4.1.1 Laplace Transform of the Unit Step Function 4.1.2 Laplace Transform of the Unit Impulse Function 4.1.3 Laplace Transform of the Ramp Function 4.1.4 Laplace Transform of the Exponential Function 4.1.5 Laplace Transform of the Complex Exponential Function 4.2 Properties of the Laplace Transform 4.2.1 Linearity 4.2.2 Time Differentiation 4.2.3 Time Integration 4.2.4 Time Shifting - Real Translation 4.2.5 Frequency Shifting - Complex Translation 4.2.6 Real Convolution 4.2.7 Partial Differentiation 4.2.8 Complex Differentiation 4.2.9 Initial Value Theorem (IVT) 4.2.10 Final Value Theorem (FVT) 4.3 The Inverse Laplace Transform 4.4 Using of the Laplace Transform 4.5 Transfer Function of a Continuous-Time System Problems 300 Chapter 5: The Z-transform 5.1 Definition of the Z-transform 5.2 Properties of the Z-transform 5.2.1 Linearity 5.2.2 Time Shifting - Real Translation 5.2.3 Frequency Shifting - Complex Translation 5.2.4 Time Reversal 5.2.5 Real Convolution 5.2.6 Complex Convolution 5.2.7 Complex Differentiation 5.2.8 Partial Differentiation 5.2.9 Initial Value Theorem 5.2.10 Final Value Theorem 5.3 The Inverse Z-transform 5.4 Using The Z-transform 5.5 Transfer Function of a Discrete-Time System 5.6 Differential Equation and Difference Equation Problems Chapter 6: Fourier Series and Fourier Transform 6.1 Continuous-Time Fourier Series (CTFS) 6.1.1 Definition and Convergence Conditions 6.1.2 Examples of CTFS 6.2 Continuous-Time Fourier Transform (CTFT) 6.2.1 Definition and Convergence Conditions 6.2.2 (Generalized) CTFT of Periodic Signals 6.2.3 Examples of CTFT 6.2.4 Properties of CTFT 6.3 Discrete-Time Fourier Transform (DTFT) 6.3.1 Definition and Convergence Conditions 6.3.2 Examples of DTFT 6.3.3 DTFT of Periodic Sequences 6.3.4 Properties of DTFT 6.4 Discrete Fourier Transform (DFT) 6.5 Fast Fourier Transform (FFT) 6.5.1 Decimation-in-Time (DIT) FFT 6.5.2 Decimation-in-Frequency (DIF) FFT 6.5.3 Computation of IDFT Using FFT Algorithm 6.5.4 Interpretation of DFT Results 6.6 Fourier-Bessel/Legendre/Chebyshev/Cosine/Sine Series 6.6.1 Fourier-Bessel Series 6.6.2 Fourier-Legendre Series 6.6.3 Fourier-Chebyshev Series 6.6.4 Fourier-Cosine/Sine Series Problems Chapter 7: Partial Differential Equation 7.1 Elliptic PDE 7.2 Parabolic PDE 7.2.1 The Explicit Forward Euler Method 7.2.2 The Implicit Forward Euler Method 7.2.3 The Crank-Nicholson Method 7.2.4 Using the MATLAB Function 'pdepe()' 7.2.5 Two-Dimensional Parabolic PDEs 7.3 Hyperbolic PDES 7.3.1 The Explict Central Difference Method 7.3.2 Tw-Dimensional Hyperbolic PDEs 7.4 PDES in Other Coordinate Systems 7.4.1 PDEs in Polar/Cylindrical Coordinates 7.4.2 PDEs in Spherical Coordinates 7.5 Laplace/Fourier Transforms for Solving PDES 7.5.1 Using the Laplace Transform for PDEs 7.5.2 Using the Fourier Transform for PDEs Problems Chapter 8: Complex Analysis 509 8.1 Functions of a Complex Variable 8.1.1 Complex Numbers and their Powers/Roots 8.1.2 Functions of a Complex Variable 8.1.3 Cauchy-Riemann Equations 8.1.4 Exponential and Logarithmic Functions 8.1.5 Trigonometric and Hyperbolic Functions 8.1.6 Inverse Trigonometric/Hyperbolic Functions 8.2 Conformal Mapping 8.2.1 Conformal Mappings 8.2.2 Linear Fractional Transformations 8.3 Integration of Complex Functions 8.3.1 Line Integrals and Contour Integrals 8.3.2 Cauchy-Goursat Theorem 8.3.3 Cauchy's Integral Formula 8.4 Series and Residues 8.4.1 Sequences and Series 8.4.2 Taylor Series 8.4.3 Laurent Series 8.4.4 Residues and Residue Theorem 8.4.5 Real Integrals Using Residue Theorem Problems Chapter 9: Optimization 9.1 Unconstrained Optimization 9.1.1 Golden Search Method 9.1.2 Quadratic Approximation Method 9.1.3 Nelder-Mead Method 9.1.4 Steepest Descent Method 9.1.5 Newton Method 9.2 Constrained Optimization 9.2.1 Lagrange Multiplier Method 9.2.2 Penalty Function Method 9.3 MATLAB Built-in Functions for Optimization 9.3.1 Unconstrained Optimization 9.3.2 Constrained Optimization 9.3.3 Linear Programming (LP) 9.3.4 Mixed Integer Linear Programing (MILP) Problems Chapter 10: Probability 10.1 Probability 10.1.1 Definition of Probability 10.1.2 Permutations and Combinations 10.1.3 Joint Probability, Conditional Probability, and Bayes' Rule 10.2 Random Variables 10.2.1 Random Variables and Probability Distribution/Density Function 10.2.2 Joint Probability Density Function 10.2.3 Conditional Probability Density Function 10.2.4 Independence 10.2.5 Function of a Random Variable 10.2.6 Expectation, Variance, and Correlation 10.2.7 Conditional Expectation 10.2.8 Central Limit Theorem - Normal Convergence Theorem 10.3 ML Estimator and MAP Estimator 653 Problems



Matlab Easy Way Of Learning


Matlab Easy Way Of Learning
DOWNLOAD
Author : S. SWAPNA KUMAR
language : en
Publisher: PHI Learning Pvt. Ltd.
Release Date : 2016-01-30

Matlab Easy Way Of Learning written by S. SWAPNA KUMAR and has been published by PHI Learning Pvt. Ltd. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-30 with Technology & Engineering categories.


MATLAB: Easy Way of Learning, covers exactly what students need to know in an introductory course. This comprehensive book helps reader in understanding all the aspects of MATLAB basics and applications in an easy way. The authors explain concepts by balanced treatment of theoretical and practical concepts with easy-to-understand programming codes and executions. The book is suitable for the postgraduate and undergraduate students of engineering and sciences streams.