Applications Of Artificial Neural Networks For Nonlinear Data

DOWNLOAD
Download Applications Of Artificial Neural Networks For Nonlinear Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of Artificial Neural Networks For Nonlinear Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Applications Of Artificial Neural Networks For Nonlinear Data
DOWNLOAD
Author : Patel, Hiral Ashil
language : en
Publisher: IGI Global
Release Date : 2020-09-25
Applications Of Artificial Neural Networks For Nonlinear Data written by Patel, Hiral Ashil and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-25 with Computers categories.
Processing information and analyzing data efficiently and effectively is crucial for any company that wishes to stay competitive in its respective market. Nonlinear data presents new challenges to organizations, however, due to its complexity and unpredictability. The only technology that can properly handle this form of data is artificial neural networks. These modeling systems present a high level of benefits in analyzing complex data in a proficient manner, yet considerable research on the specific applications of these intelligent components is significantly deficient. Applications of Artificial Neural Networks for Nonlinear Data is a collection of innovative research on the contemporary nature of artificial neural networks and their specific implementations within data analysis. While highlighting topics including propagation functions, optimization techniques, and learning methodologies, this book is ideally designed for researchers, statisticians, academicians, developers, scientists, practitioners, students, and educators seeking current research on the use of artificial neural networks in diagnosing and solving nonparametric problems.
Artificial Neural Networks For Modelling And Control Of Non Linear Systems
DOWNLOAD
Author : Johan A.K. Suykens
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Artificial Neural Networks For Modelling And Control Of Non Linear Systems written by Johan A.K. Suykens and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.
Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required. The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos. The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLqemTheory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.
Artificial Neural Networks In Real Life Applications
DOWNLOAD
Author : Juan Ramon Rabunal
language : en
Publisher: IGI Global
Release Date : 2006-01-01
Artificial Neural Networks In Real Life Applications written by Juan Ramon Rabunal and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Technology & Engineering categories.
"This book offers an outlook of the most recent works at the field of the Artificial Neural Networks (ANN), including theoretical developments and applications of systems using intelligent characteristics for adaptability"--Provided by publisher.
Application Of Artificial Neural Networks In Geoinformatics
DOWNLOAD
Author : Saro Lee
language : en
Publisher: MDPI
Release Date : 2018-04-09
Application Of Artificial Neural Networks In Geoinformatics written by Saro Lee and has been published by MDPI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-09 with Science categories.
This book is a printed edition of the Special Issue "Application of Artificial Neural Networks in Geoinformatics" that was published in Applied Sciences
Multivariate Statistical Machine Learning Methods For Genomic Prediction
DOWNLOAD
Author : Osval Antonio Montesinos López
language : en
Publisher: Springer Nature
Release Date : 2022-02-14
Multivariate Statistical Machine Learning Methods For Genomic Prediction written by Osval Antonio Montesinos López and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-14 with Technology & Engineering categories.
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
Geophysical Applications Of Artificial Neural Networks And Fuzzy Logic
DOWNLOAD
Author : W. Sandham
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-29
Geophysical Applications Of Artificial Neural Networks And Fuzzy Logic written by W. Sandham and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-29 with Mathematics categories.
The past fifteen years has witnessed an explosive growth in the fundamental research and applications of artificial neural networks (ANNs) and fuzzy logic (FL). The main impetus behind this growth has been the ability of such methods to offer solutions not amenable to conventional techniques, particularly in application domains involving pattern recognition, prediction and control. Although the origins of ANNs and FL may be traced back to the 1940s and 1960s, respectively, the most rapid progress has only been achieved in the last fifteen years. This has been due to significant theoretical advances in our understanding of ANNs and FL, complemented by major technological developments in high-speed computing. In geophysics, ANNs and FL have enjoyed significant success and are now employed routinely in the following areas (amongst others): 1. Exploration Seismology. (a) Seismic data processing (trace editing; first break picking; deconvolution and multiple suppression; wavelet estimation; velocity analysis; noise identification/reduction; statics analysis; dataset matching/prediction, attenuation), (b) AVO analysis, (c) Chimneys, (d) Compression I dimensionality reduction, (e) Shear-wave analysis, (f) Interpretation (event tracking; lithology prediction and well-log analysis; prospect appraisal; hydrocarbon prediction; inversion; reservoir characterisation; quality assessment; tomography). 2. Earthquake Seismology and Subterranean Nuclear Explosions. 3. Mineral Exploration. 4. Electromagnetic I Potential Field Exploration. (a) Electromagnetic methods, (b) Potential field methods, (c) Ground penetrating radar, (d) Remote sensing, (e) inversion.
Applications Of Artificial Neural Networks For Nonlinear Data Concepts And Categorization Chapter 1 Literature Survey For Applications Of Artificial Neural Networks Chapter 2 Comprehensive Modelling Of Ann Chapter 3 Fundamental Categories Of Artificial Neural Networks Chapter 4 Applications Of Ann For Agriculture Using Remote Sensed Data Chapter 5 Classification Approach For Sentiment Analysis Using Machine Learning
DOWNLOAD
Author : Hiral Ashil Patel
language : en
Publisher: Engineering Science Reference
Release Date : 2021
Applications Of Artificial Neural Networks For Nonlinear Data Concepts And Categorization Chapter 1 Literature Survey For Applications Of Artificial Neural Networks Chapter 2 Comprehensive Modelling Of Ann Chapter 3 Fundamental Categories Of Artificial Neural Networks Chapter 4 Applications Of Ann For Agriculture Using Remote Sensed Data Chapter 5 Classification Approach For Sentiment Analysis Using Machine Learning written by Hiral Ashil Patel and has been published by Engineering Science Reference this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Neural networks (Computer science) categories.
"This book is a collection of research on the contemporary nature of artificial neural networks and their specific implementations within data analysis"--
Neural Networks
DOWNLOAD
Author : Gérard Dreyfus
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-11-25
Neural Networks written by Gérard Dreyfus and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-25 with Science categories.
Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts and edited to present a coherent and comprehensive, yet not redundant, practically oriented introduction.
Artificial Neural Network Modelling
DOWNLOAD
Author : Subana Shanmuganathan
language : en
Publisher: Springer
Release Date : 2016-02-03
Artificial Neural Network Modelling written by Subana Shanmuganathan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-03 with Technology & Engineering categories.
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.
Research Anthology On Artificial Neural Network Applications
DOWNLOAD
Author : Management Association, Information Resources
language : en
Publisher: IGI Global
Release Date : 2021-07-16
Research Anthology On Artificial Neural Network Applications written by Management Association, Information Resources and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-16 with Computers categories.
Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.