[PDF] Applications Of Centre Manifold Theory - eBooks Review

Applications Of Centre Manifold Theory


Applications Of Centre Manifold Theory
DOWNLOAD

Download Applications Of Centre Manifold Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of Centre Manifold Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Applications Of Centre Manifold Theory


Applications Of Centre Manifold Theory
DOWNLOAD
Author : J. Carr
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Applications Of Centre Manifold Theory written by J. Carr and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


These notes are based on a series of lectures given in the Lefschetz Center for Dynamical Systems in the Division of Applied Mathematics at Brown University during the academic year 1978-79. The purpose of the lectures was to give an introduction to the applications of centre manifold theory to differential equations. Most of the material is presented in an informal fashion, by means of worked examples in the hope that this clarifies the use of centre manifold theory. The main application of centre manifold theory given in these notes is to dynamic bifurcation theory. Dynamic bifurcation theory is concerned with topological changes in the nature of the solutions of differential equations as para meters are varied. Such an example is the creation of periodic orbits from an equilibrium point as a parameter crosses a critical value. In certain circumstances, the application of centre manifold theory reduces the dimension of the system under investigation. In this respect the centre manifold theory plays the same role for dynamic problems as the Liapunov-Schmitt procedure plays for the analysis of static solutions. Our use of centre manifold theory in bifurcation problems follows that of Ruelle and Takens [57) and of Marsden and McCracken [51).



Applications Of Centre Manifold Theory


Applications Of Centre Manifold Theory
DOWNLOAD
Author : Jack Carr
language : en
Publisher: Springer Verlag
Release Date : 1981

Applications Of Centre Manifold Theory written by Jack Carr and has been published by Springer Verlag this book supported file pdf, txt, epub, kindle and other format this book has been release on 1981 with Bifurcation theory categories.




Local Bifurcations Center Manifolds And Normal Forms In Infinite Dimensional Dynamical Systems


Local Bifurcations Center Manifolds And Normal Forms In Infinite Dimensional Dynamical Systems
DOWNLOAD
Author : Mariana Haragus
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-23

Local Bifurcations Center Manifolds And Normal Forms In Infinite Dimensional Dynamical Systems written by Mariana Haragus and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-23 with Mathematics categories.


An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.



Bifurcation Theory Of Impulsive Dynamical Systems


Bifurcation Theory Of Impulsive Dynamical Systems
DOWNLOAD
Author : Kevin E.M. Church
language : en
Publisher: Springer Nature
Release Date : 2021-03-24

Bifurcation Theory Of Impulsive Dynamical Systems written by Kevin E.M. Church and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-24 with Mathematics categories.


This monograph presents the most recent progress in bifurcation theory of impulsive dynamical systems with time delays and other functional dependence. It covers not only smooth local bifurcations, but also some non-smooth bifurcation phenomena that are unique to impulsive dynamical systems. The monograph is split into four distinct parts, independently addressing both finite and infinite-dimensional dynamical systems before discussing their applications. The primary contributions are a rigorous nonautonomous dynamical systems framework and analysis of nonlinear systems, stability, and invariant manifold theory. Special attention is paid to the centre manifold and associated reduction principle, as these are essential to the local bifurcation theory. Specifying to periodic systems, the Floquet theory is extended to impulsive functional differential equations, and this permits an exploration of the impulsive analogues of saddle-node, transcritical, pitchfork and Hopf bifurcations. Readers will learn how techniques of classical bifurcation theory extend to impulsive functional differential equations and, as a special case, impulsive differential equations without delays. They will learn about stability for fixed points, periodic orbits and complete bounded trajectories, and how the linearization of the dynamical system allows for a suitable definition of hyperbolicity. They will see how to complete a centre manifold reduction and analyze a bifurcation at a nonhyperbolic steady state.



Elements Of Applied Bifurcation Theory


Elements Of Applied Bifurcation Theory
DOWNLOAD
Author : Yuri Kuznetsov
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-06-29

Elements Of Applied Bifurcation Theory written by Yuri Kuznetsov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-06-29 with Mathematics categories.


Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.



Normally Hyperbolic Invariant Manifolds In Dynamical Systems


Normally Hyperbolic Invariant Manifolds In Dynamical Systems
DOWNLOAD
Author : Stephen Wiggins
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-22

Normally Hyperbolic Invariant Manifolds In Dynamical Systems written by Stephen Wiggins and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-22 with Mathematics categories.


In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.



An Introduction To Manifolds


An Introduction To Manifolds
DOWNLOAD
Author : Loring W. Tu
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-10-05

An Introduction To Manifolds written by Loring W. Tu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-05 with Mathematics categories.


Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.



Differential Dynamical Systems Revised Edition


Differential Dynamical Systems Revised Edition
DOWNLOAD
Author : James D. Meiss
language : en
Publisher: SIAM
Release Date : 2017-01-24

Differential Dynamical Systems Revised Edition written by James D. Meiss and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-24 with Mathematics categories.


Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.



Mathematics Of Complexity And Dynamical Systems


Mathematics Of Complexity And Dynamical Systems
DOWNLOAD
Author : Robert A. Meyers
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-10-05

Mathematics Of Complexity And Dynamical Systems written by Robert A. Meyers and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-05 with Mathematics categories.


Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.



Nonlinear Dynamics


Nonlinear Dynamics
DOWNLOAD
Author : Rowena Ball
language : en
Publisher: World Scientific
Release Date : 2003

Nonlinear Dynamics written by Rowena Ball and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


This book is an inspirational introduction to modern research directions and scholarship in nonlinear dynamics, and will also be a valuable reference for researchers in the field. With the scholarly level aimed at the beginning graduate student, the book will have broad appeal to those with an undergraduate background in mathematical or physical sciences. In addition to pedagogical and new material, each chapter reviews the current state of the area and discusses classic and open problems in engaging, surprisingly non-technical ways. The contributors are Brian Davies (bifurcations in maps), Nalini Joshi (integrable systems and asymptotics), Alan Newell (wave turbulence and pattern formation), Mark Ablowitz (nonlinear waves), Carl Weiss (spatial solitons), Cathy Holmes (Hamiltonian systems), Tony Roberts (dissipative fluid mechanics), Jorgen Frederiksen (two-dimensional turbulence), and Mike Lieberman (Fermi acceleration).