[PDF] Applications Of Linear And Nonlinear Models - eBooks Review

Applications Of Linear And Nonlinear Models


Applications Of Linear And Nonlinear Models
DOWNLOAD

Download Applications Of Linear And Nonlinear Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of Linear And Nonlinear Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Applications Of Linear And Nonlinear Models


Applications Of Linear And Nonlinear Models
DOWNLOAD
Author : Erik W. Grafarend
language : en
Publisher: Springer Nature
Release Date : 2022-10-01

Applications Of Linear And Nonlinear Models written by Erik W. Grafarend and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-01 with Science categories.


This book provides numerous examples of linear and nonlinear model applications. Here, we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view and a stochastic one. For example, there is an equivalent lemma between a best, linear uniformly unbiased estimation (BLUUE) in a Gauss–Markov model and a least squares solution (LESS) in a system of linear equations. While BLUUE is a stochastic regression model, LESS is an algebraic solution. In the first six chapters, we concentrate on underdetermined and overdetermined linear systems as well as systems with a datum defect. We review estimators/algebraic solutions of type MINOLESS, BLIMBE, BLUMBE, BLUUE, BIQUE, BLE, BIQUE, and total least squares. The highlight is the simultaneous determination of the first moment and the second central moment of a probability distribution in an inhomogeneous multilinear estimation by the so-called E-D correspondence as well as its Bayes design. In addition, we discuss continuous networks versus discrete networks, use of Grassmann–Plucker coordinates, criterion matrices of type Taylor–Karman as well as FUZZY sets. Chapter seven is a speciality in the treatment of an overjet. This second edition adds three new chapters: (1) Chapter on integer least squares that covers (i) model for positioning as a mixed integer linear model which includes integer parameters. (ii) The general integer least squares problem is formulated, and the optimality of the least squares solution is shown. (iii) The relation to the closest vector problem is considered, and the notion of reduced lattice basis is introduced. (iv) The famous LLL algorithm for generating a Lovasz reduced basis is explained. (2) Bayes methods that covers (i) general principle of Bayesian modeling. Explain the notion of prior distribution and posterior distribution. Choose the pragmatic approach for exploring the advantages of iterative Bayesian calculations and hierarchical modeling. (ii) Present the Bayes methods for linear models with normal distributed errors, including noninformative priors, conjugate priors, normal gamma distributions and (iii) short outview to modern application of Bayesian modeling. Useful in case of nonlinear models or linear models with no normal distribution: Monte Carlo (MC), Markov chain Monte Carlo (MCMC), approximative Bayesian computation (ABC) methods. (3) Error-in-variables models, which cover: (i) Introduce the error-in-variables (EIV) model, discuss the difference to least squares estimators (LSE), (ii) calculate the total least squares (TLS) estimator. Summarize the properties of TLS, (iii) explain the idea of simulation extrapolation (SIMEX) estimators, (iv) introduce the symmetrized SIMEX (SYMEX) estimator and its relation to TLS, and (v) short outview to nonlinear EIV models. The chapter on algebraic solution of nonlinear system of equations has also been updated in line with the new emerging field of hybrid numeric-symbolic solutions to systems of nonlinear equations, ermined system of nonlinear equations on curved manifolds. The von Mises–Fisher distribution is characteristic for circular or (hyper) spherical data. Our last chapter is devoted to probabilistic regression, the special Gauss–Markov model with random effects leading to estimators of type BLIP and VIP including Bayesian estimation. A great part of the work is presented in four appendices. Appendix A is a treatment, of tensor algebra, namely linear algebra, matrix algebra, and multilinear algebra. Appendix B is devoted to sampling distributions and their use in terms of confidence intervals and confidence regions. Appendix C reviews the elementary notions of statistics, namely random events and stochastic processes. Appendix D introduces the basics of Groebner basis algebra, its careful definition, the Buchberger algorithm, especially the C. F. Gauss combinatorial algorithm.



Linear And Nonlinear Models


Linear And Nonlinear Models
DOWNLOAD
Author : Erik W. Grafarend
language : en
Publisher:
Release Date : 2006

Linear And Nonlinear Models written by Erik W. Grafarend and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematical models categories.


This monograph contains a thorough treatment of methods for solving over- and underdetermined systems of equations, e.g. the minimum norm solution method with respect to weighted norms. The considered equations can be nonlinear or linear, and deterministic models as well as probabilistic ones are considered. An extensive appendix provides all necessary prerequisites like matrix algebra, matrix analysis and Lagrange multipliers, and a long list of references is also included.



Applications Of Linear And Nonlinear Models


Applications Of Linear And Nonlinear Models
DOWNLOAD
Author : Erik Grafarend
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-08-15

Applications Of Linear And Nonlinear Models written by Erik Grafarend and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-15 with Science categories.


Here we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view as well as a stochastic one. For example, there is an equivalent lemma between a best, linear uniformly unbiased estimation (BLUUE) in a Gauss-Markov model and a least squares solution (LESS) in a system of linear equations. While BLUUE is a stochastic regression model, LESS is an algebraic solution. In the first six chapters we concentrate on underdetermined and overdeterimined linear systems as well as systems with a datum defect. We review estimators/algebraic solutions of type MINOLESS, BLIMBE, BLUMBE, BLUUE, BIQUE, BLE, BIQUE and Total Least Squares. The highlight is the simultaneous determination of the first moment and the second central moment of a probability distribution in an inhomogeneous multilinear estimation by the so called E-D correspondence as well as its Bayes design. In addition, we discuss continuous networks versus discrete networks, use of Grassmann-Pluecker coordinates, criterion matrices of type Taylor-Karman as well as FUZZY sets. Chapter seven is a speciality in the treatment of an overdetermined system of nonlinear equations on curved manifolds. The von Mises-Fisher distribution is characteristic for circular or (hyper) spherical data. Our last chapter eight is devoted to probabilistic regression, the special Gauss-Markov model with random effects leading to estimators of type BLIP and VIP including Bayesian estimation. A great part of the work is presented in four Appendices. Appendix A is a treatment, of tensor algebra, namely linear algebra, matrix algebra and multilinear algebra. Appendix B is devoted to sampling distributions and their use in terms of confidence intervals and confidence regions. Appendix C reviews the elementary notions of statistics, namely random events and stochastic processes. Appendix D introduces the basics of Groebner basis algebra, its careful definition, the Buchberger Algorithm, especially the C. F. Gauss combinatorial algorithm.



Nonlinear Regression Analysis And Its Applications


Nonlinear Regression Analysis And Its Applications
DOWNLOAD
Author : Douglas M. Bates
language : en
Publisher: Wiley-Interscience
Release Date : 2007-04-23

Nonlinear Regression Analysis And Its Applications written by Douglas M. Bates and has been published by Wiley-Interscience this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-23 with Mathematics categories.


Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.



Linear And Nonlinear Inverse Problems With Practical Applications


Linear And Nonlinear Inverse Problems With Practical Applications
DOWNLOAD
Author : Jennifer L. Mueller
language : en
Publisher: SIAM
Release Date : 2012-11-30

Linear And Nonlinear Inverse Problems With Practical Applications written by Jennifer L. Mueller and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-30 with Mathematics categories.


Inverse problems arise in practical applications whenever there is a need to interpret indirect measurements. This book explains how to identify ill-posed inverse problems arising in practice and gives a hands-on guide to designing computational solution methods for them, with related codes on an accompanying website. The guiding linear inversion examples are the problem of image deblurring, x-ray tomography, and backward parabolic problems, including heat transfer. A thorough treatment of electrical impedance tomography is used as the guiding nonlinear inversion example which combines the analytic-geometric research tradition and the regularization-based school of thought in a fruitful manner. This book is complete with exercises and project topics, making it ideal as a classroom textbook or self-study guide for graduate and advanced undergraduate students in mathematics, engineering or physics who wish to learn about computational inversion. It also acts as a useful guide for researchers who develop inversion techniques in high-tech industry.



Sampled Data Models For Linear And Nonlinear Systems


Sampled Data Models For Linear And Nonlinear Systems
DOWNLOAD
Author : Juan I. Yuz
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-10-17

Sampled Data Models For Linear And Nonlinear Systems written by Juan I. Yuz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-17 with Technology & Engineering categories.


Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: · the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; · although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and · the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either partially or completely erroneous. They also deal with linear and nonlinear, deterministic and stochastic cases. The impact of the ideas presented on several standard problems in signals and systems is illustrated using a number of applications. Academic researchers and graduate students in systems, control and signal processing will find the ideas presented in Sampled-data Models for Linear and Nonlinear Systems to be a useful manual for dealing with sampled-data systems, clearing away mistaken ideas and bringing the subject thoroughly up to date. Researchers in statistics and economics will also derive benefit from the reworking of ideas relating a model derived from data sampling to an original continuous system.



Numerical Methods For Nonlinear Engineering Models


Numerical Methods For Nonlinear Engineering Models
DOWNLOAD
Author : John R. Hauser
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-03-24

Numerical Methods For Nonlinear Engineering Models written by John R. Hauser and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-24 with Technology & Engineering categories.


There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.



Generalized Linear Models


Generalized Linear Models
DOWNLOAD
Author : Raymond H. Myers
language : en
Publisher: John Wiley & Sons
Release Date : 2012-01-20

Generalized Linear Models written by Raymond H. Myers and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-20 with Mathematics categories.


Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities." —Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Maintaining the same nontechnical approach as its predecessor, this update has been thoroughly extended to include the latest developments, relevant computational approaches, and modern examples from the fields of engineering and physical sciences. This new edition maintains its accessible approach to the topic by reviewing the various types of problems that support the use of GLMs and providing an overview of the basic, related concepts such as multiple linear regression, nonlinear regression, least squares, and the maximum likelihood estimation procedure. Incorporating the latest developments, new features of this Second Edition include: A new chapter on random effects and designs for GLMs A thoroughly revised chapter on logistic and Poisson regression, now with additional results on goodness of fit testing, nominal and ordinal responses, and overdispersion A new emphasis on GLM design, with added sections on designs for regression models and optimal designs for nonlinear regression models Expanded discussion of weighted least squares, including examples that illustrate how to estimate the weights Illustrations of R code to perform GLM analysis The authors demonstrate the diverse applications of GLMs through numerous examples, from classical applications in the fields of biology and biopharmaceuticals to more modern examples related to engineering and quality assurance. The Second Edition has been designed to demonstrate the growing computational nature of GLMs, as SAS®, Minitab®, JMP®, and R software packages are used throughout the book to demonstrate fitting and analysis of generalized linear models, perform inference, and conduct diagnostic checking. Numerous figures and screen shots illustrating computer output are provided, and a related FTP site houses supplementary material, including computer commands and additional data sets. Generalized Linear Models, Second Edition is an excellent book for courses on regression analysis and regression modeling at the upper-undergraduate and graduate level. It also serves as a valuable reference for engineers, scientists, and statisticians who must understand and apply GLMs in their work.



Applications Of Nonlinear Analysis


Applications Of Nonlinear Analysis
DOWNLOAD
Author : Themistocles M. Rassias
language : en
Publisher: Springer
Release Date : 2018-06-29

Applications Of Nonlinear Analysis written by Themistocles M. Rassias and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-29 with Mathematics categories.


New applications, research, and fundamental theories in nonlinear analysis are presented in this book. Each chapter provides a unique insight into a large domain of research focusing on functional equations, stability theory, approximation theory, inequalities, nonlinear functional analysis, and calculus of variations with applications to optimization theory. Topics include: Fixed point theory Fixed-circle theory Coupled fixed points Nonlinear duality in Banach spaces Jensen's integral inequality and applications Nonlinear differential equations Nonlinear integro-differential equations Quasiconvexity, Stability of a Cauchy-Jensen additive mapping Generalizations of metric spaces Hilbert-type integral inequality, Solitons Quadratic functional equations in fuzzy Banach spaces Asymptotic orbits in Hill’sproblem Time-domain electromagnetics Inertial Mann algorithms Mathematical modelling Robotics Graduate students and researchers will find this book helpful in comprehending current applications and developments in mathematical analysis. Research scientists and engineers studying essential modern methods and techniques to solve a variety of problems will find this book a valuable source filled with examples that illustrate concepts.



Linear And Non Linear System Theory


Linear And Non Linear System Theory
DOWNLOAD
Author : T Thyagarajan
language : en
Publisher: CRC Press
Release Date : 2020-10-21

Linear And Non Linear System Theory written by T Thyagarajan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-21 with Mathematics categories.


Linear and Non-Linear System Theory focuses on the basics of linear and non-linear systems, optimal control and optimal estimation with an objective to understand the basics of state space approach linear and non-linear systems and its analysis thereof. Divided into eight chapters, materials cover an introduction to the advanced topics in the field of linear and non-linear systems, optimal control and estimation supported by mathematical tools, detailed case studies and numerical and exercise problems. This book is aimed at senior undergraduate and graduate students in electrical, instrumentation, electronics, chemical, control engineering and other allied branches of engineering. Features Covers both linear and non-linear system theory Explores state feedback control and state estimator concepts Discusses non-linear systems and phase plane analysis Includes non-linear system stability and bifurcation behaviour Elaborates optimal control and estimation