Applications Of Tensor Analysis In Continuum Mechanics

DOWNLOAD
Download Applications Of Tensor Analysis In Continuum Mechanics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of Tensor Analysis In Continuum Mechanics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Tensor Algebra And Tensor Analysis For Engineers
DOWNLOAD
Author : Mikhail Itskov
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-04
Tensor Algebra And Tensor Analysis For Engineers written by Mikhail Itskov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-04 with Technology & Engineering categories.
There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.
Applications Of Tensor Analysis In Continuum Mechanics
DOWNLOAD
Author : Victor A Eremeyev
language : en
Publisher: World Scientific
Release Date : 2018-07-10
Applications Of Tensor Analysis In Continuum Mechanics written by Victor A Eremeyev and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-10 with Technology & Engineering categories.
'A strong point of this book is its coverage of tensor theory, which is herein deemed both more readable and more substantial than many other historic continuum mechanics books. The book is self-contained. It serves admirably as a reference resource on fundamental principles and equations of tensor mathematics applied to continuum mechanics. Exercises and problem sets are useful for teaching … The book is highly recommended as both a graduate textbook and a reference work for students and more senior researchers involved in theoretical and mathematical modelling of continuum mechanics of materials. Key concepts are well described in the text and are supplemented by informative exercises and problem sets with solutions, and comprehensive Appendices provide important equations for ease of reference.'Contemporary PhysicsA tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions.This book provides a clear, concise, and self-contained treatment of tensors and tensor fields. It covers the foundations of linear elasticity, shell theory, and generalized continuum media, offers hints, answers, and full solutions for many of the problems and exercises, and Includes a handbook-style summary of important tensor formulas.The book can be useful for beginners who are interested in the basics of tensor calculus. It also can be used by experienced readers who seek a comprehensive review on applications of the tensor calculus in mechanics.
Tensor Analysis With Applications In Mechanics
DOWNLOAD
Author : Leonid P Lebedev
language : en
Publisher: World Scientific
Release Date : 2010-05-18
Tensor Analysis With Applications In Mechanics written by Leonid P Lebedev and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-05-18 with Technology & Engineering categories.
The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions.A tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems.This book is a clear, concise, and self-contained treatment of tensors, tensor fields, and their applications. The book contains practically all the material on tensors needed for applications. It shows how this material is applied in mechanics, covering the foundations of the linear theories of elasticity and elastic shells.The main results are all presented in the first four chapters. The remainder of the book shows how one can apply these results to differential geometry and the study of various types of objects in continuum mechanics such as elastic bodies, plates, and shells. Each chapter of this new edition is supplied with exercises and problems — most with solutions, hints, or answers to help the reader progress. An extended appendix serves as a handbook-style summary of all important formulas contained in the book.
Tensor Analysis And Continuum Mechanics
DOWNLOAD
Author : Wilhelm Flügge
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Tensor Analysis And Continuum Mechanics written by Wilhelm Flügge and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Science categories.
Through several centuries there has been a lively interaction between mathematics and mechanics. On the one side, mechanics has used mathemat ics to formulate the basic laws and to apply them to a host of problems that call for the quantitative prediction of the consequences of some action. On the other side, the needs of mechanics have stimulated the development of mathematical concepts. Differential calculus grew out of the needs of Newtonian dynamics; vector algebra was developed as a means . to describe force systems; vector analysis, to study velocity fields and force fields; and the calcul~s of variations has evolved from the energy principles of mechan ics. In recent times the theory of tensors has attracted the attention of the mechanics people. Its very name indicates its origin in the theory of elasticity. For a long time little use has been made of it in this area, but in the last decade its usefulness in the mechanics of continuous media has been widely recognized. While the undergraduate textbook literature in this country was becoming "vectorized" (lagging almost half a century behind the development in Europe), books dealing with various aspects of continuum mechanics took to tensors like fish to water. Since many authors were not sure whether their readers were sufficiently familiar with tensors~ they either added' a chapter on tensors or wrote a separate book on the subject.
Introduction To Tensor Calculus And Continuum Mechanics
DOWNLOAD
Author : John Henry Heinbockel
language : en
Publisher:
Release Date : 1996
Introduction To Tensor Calculus And Continuum Mechanics written by John Henry Heinbockel and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with categories.
Tensors
DOWNLOAD
Author : Anadi Jiban Das
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-05
Tensors written by Anadi Jiban Das and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-05 with Science categories.
Here is a modern introduction to the theory of tensor algebra and tensor analysis. It discusses tensor algebra and introduces differential manifold. Coverage also details tensor analysis, differential forms, connection forms, and curvature tensor. In addition, the book investigates Riemannian and pseudo-Riemannian manifolds in great detail. Throughout, examples and problems are furnished from the theory of relativity and continuum mechanics.
Continuum Mechanics And Linear Elasticity
DOWNLOAD
Author : Ciprian D. Coman
language : en
Publisher: Springer Nature
Release Date : 2019-11-02
Continuum Mechanics And Linear Elasticity written by Ciprian D. Coman and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-02 with Technology & Engineering categories.
This is an intermediate book for beginning postgraduate students and junior researchers, and offers up-to-date content on both continuum mechanics and elasticity. The material is self-contained and should provide readers sufficient working knowledge in both areas. Though the focus is primarily on vector and tensor calculus (the so-called coordinate-free approach), the more traditional index notation is used whenever it is deemed more sensible. With the increasing demand for continuum modeling in such diverse areas as mathematical biology and geology, it is imperative to have various approaches to continuum mechanics and elasticity. This book presents these subjects from an applied mathematics perspective. In particular, it extensively uses linear algebra and vector calculus to develop the fundamentals of both subjects in a way that requires minimal use of coordinates (so that beginning graduate students and junior researchers come to appreciate the power of the tensor notation).
Tensor Analysis
DOWNLOAD
Author : L. P. Lebedev
language : en
Publisher: World Scientific
Release Date : 2003
Tensor Analysis written by L. P. Lebedev and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.
Tensor analysis is an essential tool in any science (e.g. engineering, physics, mathematical biology) that employs a continuumdescription. This concise text offers a straightforward treatment ofthe subject suitable for the student or practicing engineer
Fundamentals Of Tensor Calculus For Engineers With A Primer On Smooth Manifolds
DOWNLOAD
Author : Uwe Mühlich
language : en
Publisher: Springer
Release Date : 2017-04-18
Fundamentals Of Tensor Calculus For Engineers With A Primer On Smooth Manifolds written by Uwe Mühlich and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-18 with Science categories.
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.